1.加载数据
# English source data
with open("data/small_vocab_en", "r", encoding="utf-8") as f:
source_text = f.read()
# French target data
with open("data/small_vocab_fr", "r", encoding="utf-8") as f:
target_text = f.read()
2.查看数据
# 统计英文语料数据
sentences = source_text.split('\n')
word_counts = [len(sentence.split()) for sentence in sentences]
# 统计法语语料数据
sentences = target_text.split('\n')
word_counts = [len(sentence.split()) for sentence in sentences]
3.数据预处理
3.1 构造字典
# 构造英文词典
source_vocab = list(set(source_text.lower().split()))
# 构造法语词典
target_vocab = list(set(target_text.lower().split()))
3.2 增加特殊字符
# 增加特殊编码
SOURCE_CODES = ['<PAD>', '<UNK>']
TARGET_CODES = ['<PAD>', '<EOS>', '<UNK>', '<GO>']
3.3 word和id之间的映射表
# 构造英文语料的映射表
source_vocab_to_int = {word: idx for idx, word in enumerate(SOURCE_CODES + source_vocab)}
source_int_to_vocab = {idx: word for idx, word in enumerate(SOURCE_CODES + source_vocab)}
# 构造法语语料的映射表
target_vocab_to_int = {word: idx for idx, word in enumerate(TARGET_CODES + target_vocab)}
target_int_to_vocab = {idx: word for idx, word in enumerate(TARGET_CODES + target_vocab)}
3.4 text 转换成 int
# 用<PAD>填充整个序列
text_to_idx = []
# unk index
unk_idx = map_dict.get("<UNK>")
pad_idx = map_dict.get("<PAD>")
eos_idx = map_dict.get("<EOS>")
# 如果是输入源文本
if not is_target:
for word in sentence.lower().split():
text_to_idx.append(map_dict.get(word, unk_idx))
# 否则,对于输出目标文本需要做<EOS>的填充最后
else:
for word in sentence.lower().split():
text_to_idx.append(map_dict.get(word, unk_idx))
text_to_idx.append(eos_idx)
# 如果超长需要截断
if len(text_to_idx) > max_length:
return text_to_idx[:max_length]
# 如果不够则增加<PAD>
else:
text_to_idx = text_to_idx + [pad_idx] * (max_length - len(text_to_idx))
return text_to_idx
# 对源句子进行转换 Tx = 20
source_text_to_int = []
for sentence in tqdm.tqdm(source_text.split("\n")):
source_text_to_int.append(text_to_int(sentence, source_vocab_to_int, 20,
is_target=False))
# 对目标句子进行转换 Ty = 25
target_text_to_int = []
for sentence in tqdm.tqdm(target_text.split("\n")):
target_text_to_int.append(text_to_int(sentence, target_vocab_to_int, 25,
is_target=True))
X = np.array(source_text_to_int)
Y = np.array(target_text_to_int)
# 对X和Y做One Hot Encoding
Xoh = np.array(list(map(lambda x: to_categorical(x, num_classes=len(source_vocab_to_int)), X)))
Yoh = np.array(list(map(lambda x: to_categorical(x, num_classes=len(target_vocab_to_int)), Y)))
4. 构建模型
和上一篇介绍的一样,encoder将输入信息embedding转换成稠密向量,再输入给LSTM学习成一个固定长度向量S,S输入到Decoder端生成新的序列。所以模型模块主要分为四部分:
- 模型输入: model_inputs
- Encoder端: encoder_layer
- Decoder端:输入端decoder_layer_inputs/ 训练deocder_layer_train / 预测 decoder_layer_inference
- Seq2seq模型
具体代码可以套用上一篇
5.模型预测与调参
epochs = 10
batch_size =128
rnn_size = 128
rnn_num_layers = 1
encoder_embedding_size = 100
decoder_embedding_size = 100
learning_rate = 0.001
#每50轮打印一次结果
display_step = 50
设置了10轮迭代,1层LSTM,encoder与decoder的嵌入词向量维度均为100维,并指定每训练50轮打印一次结果.由于语料库比较少,仅有13W条,对于语言翻译模型这种严重依赖数据的模型确实有点少。而且因为数据集有限,并没有划分训练集和测试集。
最终的LOSS在0.01左右。
如果用BiLSTM可以得到更多上下文的信息,另外如果还加入attention,在翻译每个单词时会使用不同的S,这样decoder时候,准确率更高。