本文基于文章 https://blog.csdn.net/lemonlhy/article/details/80059289,感谢原作者,再次我又对spark常用的rdd java接口用lambda表达式重新实现了一遍,代码更简洁。
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.kylin.spark;
import org.apache.spark.Partitioner;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.PairFunction;
import org.apache.spark.api.java.function.VoidFunction;
import scala.Tuple2;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Iterator;
import java.util.List;
import java.util.stream.StreamSupport;
/**
*/
public class TransformationOperator {
public static SparkConf conf = new SparkConf().setMaster("local").setAppName("test");
public static JavaSparkContext sc = new JavaSparkContext(conf);
public static void main(String[] args) {
//map();
//filter();
//flatMap();
//groupBykey();
//reduceBykey();
// sortBykey();
//join();
//union();
// intersection();
// cartesian();
// distinct();
//mapPartitions();
// repartition();
//coalesce();
//aggregateByKey();
//mapPartitionsWithIndex();
cogroup();
// repartitionAndSortWithinPartitions();
// sample();
}
public static void map(){
final List<String> list = Arrays.asList("张无忌", "赵敏", "周芷若");
/*final Set<String> set = Sets.newLinkedHashSet();
set.addAll(list);*/
final JavaRDD<String> rdd = sc.parallelize(list);
System.out.println("\nLambda表达式实现:");
rdd.map(name -> "Hello " + name).foreach(s -> println(s));
}
public static void flatMap() {
final List<String> list = Arrays.asList("张无忌 赵敏", "宋青书 周芷若");
final JavaRDD<String> rdd = sc.parallelize(list);
System.out.println("\nLambda表达式实现:");
rdd.flatMap(names -> Arrays.asList(names.split(" ")).iterator())
.map(name -> "Hello " + name)
.foreach(name -> println(name));
}
/**
* 从RDD过滤出来偶数
*/
public static void filter(){
final List<Integer> list = Arrays.asList(1, 2, 3, 4, 5, 6, 7);
final JavaRDD<Integer> rdd = sc.parallelize(list);
System.out.println("\nLambda表达式实现:");
rdd.filter(x -> x%2 == 0).foreach(x -> println(String.valueOf(x)));
}
/**RDD()
* bykey
*/
public static void groupBykey(){
final List<Tuple2<String, String>> list = Arrays.asList(
new Tuple2<String, String>("峨眉", "周芷若"),
new Tuple2<String, String>("武当", "宋青书"),
new Tuple2<String, String>("峨眉", "灭绝师太"),
new Tuple2<String, String>("武当", "张三丰")
);
final JavaPairRDD<String, String> rdd = (JavaPairRDD<String, String>)sc.parallelizePairs(list);
final JavaPairRDD<String, Iterable<String>> groupBykeyRDD = rdd.groupByKey();
System.out.println("\nLambda表达式实现1:");
groupBykeyRDD.foreach(names -> {
println(names._1);
Iterator<String> iterator = names._2.iterator();
while (iterator.hasNext()) {
System.out.print(iterator.next() + " ");
}
System.out.println();
});
System.out.println("\nLambda表达式实现1:");
groupBykeyRDD.foreach(names -> {
println(names._1);
names._2.forEach(name -> System.out.print(name + " "));
System.out.println();
});
}
/**
* 一线城市: 8 年 -> 100万
* 5: 50以上IT
*/
public static void reduceBykey(){
final List<Tuple2<String, Integer>> list = Arrays.asList(
new Tuple2<String, Integer>("峨眉", 40),
new Tuple2<String, Integer>("武当", 30),
new Tuple2<String, Integer>("峨眉",60),
new Tuple2<String, Integer>("武当",99)
);
//reduceBykey
final JavaPairRDD<String, Integer> rdd = (JavaPairRDD<String, Integer>)sc.parallelizePairs(list);
System.out.println("\nLambda表达式实现:");
rdd.reduceByKey((x, y) -> x + y).foreach(tuple -> println(tuple._1 + " " + tuple._2));
}
public static void sortBykey(){
final List<Tuple2<Integer, String>> list = Arrays.asList(
new Tuple2<Integer, String>(98,"东方不败"),
new Tuple2<Integer, String>(80,"岳不群"),
new Tuple2<Integer, String>(85,"令狐冲"),
new Tuple2<Integer, String>(83,"任我行")
);
final JavaPairRDD<Integer, String> rdd = (JavaPairRDD<Integer, String>)sc.parallelizePairs(list);
System.out.println("\nLambda表达式实现:");
rdd.sortByKey(false).foreach(tuple -> println(tuple._1 + " -> " + tuple._2));
}
public static void join(){
final List<Tuple2<Integer, String>> names = Arrays.asList(
new Tuple2<Integer, String>(1, "东方不败"),
new Tuple2<Integer, String>(2, "令狐冲"),
new Tuple2<Integer, String>(3, "林平之")
);
final List<Tuple2<Integer, Integer>> scores = Arrays.asList(
new Tuple2<Integer, Integer>(1, 99),
new Tuple2<Integer, Integer>(2, 98),
new Tuple2<Integer, Integer>(3, 97)
);
final JavaPairRDD<Integer, String> nemesrdd = (JavaPairRDD<Integer, String>)sc.parallelizePairs(names);
final JavaPairRDD<Integer, Integer> scoresrdd = (JavaPairRDD<Integer, Integer>)sc.parallelizePairs(scores);
/**
* <Integer, 学号
* Tuple2<String, 名字
* Integer>> 分数
*/
System.out.println("\nLambda表达式实现:");
sc.parallelizePairs(names).join(sc.parallelizePairs(scores)).sortByKey()
.foreach(tuple -> println("学号:" + tuple._1 + " 名字:" + tuple._2._1 + " 分数:" + tuple._2._2));
}
public static void union(){
final List<Integer> list1 = Arrays.asList(1, 2, 3, 4);
final List<Integer> list2 = Arrays.asList(3, 4, 5, 6);
final JavaRDD<Integer> rdd1 = sc.parallelize(list1);
final JavaRDD<Integer> rdd2 = sc.parallelize(list2);
System.out.println("\nLambda表达式实现:");
rdd1.union(rdd2).foreach(value -> System.out.print(value + " "));
}
/**
* 交集
*/
public static void intersection(){
final List<Integer> list1 = Arrays.asList(1, 2, 3, 4);
final List<Integer> list2 = Arrays.asList(3, 4, 5, 6);
final JavaRDD<Integer> rdd1 = sc.parallelize(list1);
final JavaRDD<Integer> rdd2 = sc.parallelize(list2);
System.out.println("\nLambda表达式实现:");
rdd1.intersection(rdd2).foreach(number -> System.out.print(number + " "));
}
public static void distinct() {
final List<Integer> list1 = Arrays.asList(1, 2, 3,3,4,4);
final JavaRDD<Integer> rdd1 = sc.parallelize(list1);
System.out.println("\nLambda表达式实现:");
rdd1.distinct().sortBy(value-> value, true, 1).foreach(value -> println(value + " "));
}
/**
* 笛卡尔积
* A={a,b}
* B={0,1,2}
* A B 笛卡尔积
* a0,a1,a2
* b0,b1,b2
*/
public static void cartesian(){
final List<String> A = Arrays.asList("a", "b");
final List<Integer> B = Arrays.asList(0, 1, 2);
final JavaRDD<String> rddA = sc.parallelize(A);
final JavaRDD<Integer> rddB = sc.parallelize(B);
System.out.println("\nLambda表达式实现:");
rddA.cartesian(rddB).foreach(tuple -> println(tuple._1 + " -> " + tuple._2));
}
/**
* map:
* 一条数据一条数据的处理(文件系统,数据库等等)
* mapPartitions:
* 一次获取的是一个分区的数据(hdfs)
* 正常情况下,mapPartitions 是一个高性能的算子
* 因为每次处理的是一个分区的数据,减少了去获取数据的次数。
*
* 但是如果我们的分区如果设置得不合理,有可能导致每个分区里面的数据量过大。
*/
public static void mapPartitions(){
final List<Integer> list = Arrays.asList(1, 2, 3, 4, 5, 6);
//参数二代表这个rdd里面有两个分区
final JavaRDD<Integer> rdd = sc.parallelize(list, 2);
System.out.println("\nLambda表达式实现:");
rdd.mapPartitions(integerIterator -> {
Iterable<Integer> integers = () -> integerIterator;
return StreamSupport.stream(integers.spliterator(),true)
.map(value -> "hello-" + value).iterator();
}).foreach(value -> println(value));
}
/**
* 进行重分区
* HDFS -》 hello.txt 2个文件块(不包含副本)
* 2个文件块 -》2个分区 -》当spark任务运行,一个分区就启动一个task任务。
*
* 解决的问题:本来分区数少 -》 增加分区数
*/
public static void repartition(){
final List<Integer> list = Arrays.asList(1, 2, 3, 4, 5, 6);
final JavaRDD<Integer> rdd = (JavaRDD<Integer>) sc.parallelize(list, 1);
// coalesce(numPartitions, shuffle = true)
System.out.println("\nLambda表达式实现:");
rdd.repartition(2).foreach(number -> println(number + ""));
}
/**
* 实现单词计数
*/
public static void aggregateByKey(){
final List<String> list = Arrays.asList("you,jump", "i,jump");
final JavaRDD<String> rdd = sc.parallelize(list);
System.out.println("\nLambda表达式实现:");
rdd.flatMap(lines -> Arrays.asList(lines.split(",")).iterator())
.mapToPair(word -> new Tuple2<>(word, 1))
.aggregateByKey(0, (v1, v2) -> v1 + v2, (v1, v2) -> v1 + v2)
.foreach(v -> println(v._1 + " -> " + v._2));
}
/**
* 分区数由多 -> 变少
*/
public static void coalesce(){
final List<Integer> list = Arrays.asList(1, 2, 3, 4, 5, 6);
final JavaRDD<Integer> rdd = (JavaRDD<Integer>) sc.parallelize(list, 3);
System.out.println("\nLambda表达式实现:");
rdd.coalesce(1).foreach(v -> println(v + ""));
}
/**
* map: 每次获取和处理的就是一条数据
* mapParitions: 每次获取和处理的就是一个分区的数据
* mapPartitionsWithIndex:每次获取和处理的就是一个分区的数据,并且知道处理的分区的分区号是啥?
*/
public static void mapPartitionsWithIndex(){
final List<Integer> list = Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8);
final JavaRDD<Integer> rdd = sc.parallelize(list, 2);//HashParitioners Rangepartitionw 自定义分区
System.out.println("\nLambda表达式实现:");
rdd.mapPartitionsWithIndex((integer, iterator) -> {
Iterable integers = () -> iterator;
return StreamSupport.stream(integers.spliterator(), true)
.map(value -> integer + "_" + value).iterator();
}, true)
.foreach(value -> println(value + ""));
}
/**
* When called on datasets of type (K, V) and (K, W),
* returns a dataset of (K, (Iterable<V>, Iterable<W>)) tuples.
*/
public static void cogroup(){
//sh s sha shan shang sa san sang
final List<Tuple2<Integer, String>> list1 = Arrays.asList(
new Tuple2<Integer, String>(1, "东方不败"),
new Tuple2<Integer, String>(2, "林平之"),
new Tuple2<Integer, String>(3, "岳不群"),
new Tuple2<Integer, String>(1, "东方不败"),
new Tuple2<Integer, String>(2, "林平之"),
new Tuple2<Integer, String>(3, "岳不群")
);
final List<Tuple2<Integer, Integer>> list2 = Arrays.asList(
new Tuple2<Integer, Integer>(1, 90),
new Tuple2<Integer, Integer>(2, 91),
new Tuple2<Integer, Integer>(3, 89),
new Tuple2<Integer, Integer>(1, 98),
new Tuple2<Integer, Integer>(2, 78),
new Tuple2<Integer, Integer>(3, 67)
);
final JavaPairRDD<Integer, String> rdd1 = (JavaPairRDD<Integer, String> )sc.parallelizePairs(list1);
final JavaPairRDD<Integer, Integer> rdd2 = (JavaPairRDD<Integer, Integer> )sc.parallelizePairs(list2);
final JavaPairRDD<Integer, Tuple2<Iterable<String>, Iterable<Integer>>> rdd3 =
(JavaPairRDD<Integer, Tuple2<Iterable<String>, Iterable<Integer>>>) rdd1.cogroup(rdd2);
rdd3.foreach(new VoidFunction<Tuple2<Integer, Tuple2<Iterable<String>, Iterable<Integer>>>>() {
@Override
public void call(Tuple2<Integer, Tuple2<Iterable<String>, Iterable<Integer>>> tuple) throws Exception {
final Integer id = tuple._1;
final Iterable<String> names = tuple._2._1;
final Iterable<Integer> scores = tuple._2._2;
println("ID:"+id + " Name: "+names+ " Scores: "+ scores);
}
});
}
/**
* 少 -> 多
*
*/
public static void repartitionAndSortWithinPartitions(){//调优
final List<Integer> list = Arrays.asList(1, 2, 11, 3, 12, 4, 5);
final JavaRDD<Integer> rdd = sc.parallelize(list, 1);
final JavaPairRDD<Integer, Integer> pairRDD = rdd.mapToPair(new PairFunction<Integer, Integer, Integer>() {
@Override
public Tuple2<Integer, Integer> call(Integer number) throws Exception {
return new Tuple2<>(number, number);
}
});
//new HashPartitioner(2) new RangePartitioner<>()
pairRDD.repartitionAndSortWithinPartitions(new Partitioner() {
@Override
public int numPartitions() {
return 2;
}
@Override
public int getPartition(Object key) {
final Integer number = Integer.valueOf(key.toString());
if(number % 2 == 0){
return 0;
}else{
return 1;
}
}
}).mapPartitionsWithIndex(new Function2<Integer, Iterator<Tuple2<Integer, Integer>>,
Iterator<String>>() {
@Override
public Iterator<String> call(Integer index, Iterator<Tuple2<Integer, Integer>> iterator) throws Exception {
final ArrayList<String> list = new ArrayList<>();
while(iterator.hasNext()){
list.add(index + "_"+ iterator.next());
}
return list.iterator();
}
},false)
.foreach(new VoidFunction<String>() {
@Override
public void call(String s) throws Exception {
println(s);
}
});
}
/**
* 有放回
* 无放回
*/
public static void sample(){
final List<Integer> list = Arrays.asList(1, 2, 3, 4, 5, 6, 7,9,10);
final JavaRDD<Integer> rdd = sc.parallelize(list);
/**
* withReplacement: Boolean,
* true: 有放回的抽样
* false: 无放回抽象
* fraction: Double:
* RDD 里面的每个元素被抽到的概率有多大
* seed: Long:
* 随机种子
*
*
*/
final JavaRDD<Integer> rdd2 = rdd.sample(false, 0.5);
rdd2.foreach(new VoidFunction<Integer>() {
@Override
public void call(Integer integer) throws Exception {
println(integer + "");
}
});
}
public static void pipe(){
final List<Integer> list = Arrays.asList(1, 2, 3, 4, 5, 6, 7,9,10);
final JavaRDD<Integer> rdd = sc.parallelize(list);
// final JavaRDD<String> pipe = rdd.pipe("sh wordcouont.sh");
}
public static void println(String str){
System.out.println(str);
}
}