【码农翻身笔记】MapReduce的来龙去脉

为什么计算也要分布式

使用HDFS可以把文件分割为一个一个的片段,然后存储在各个节点上,同时为了保证高可靠性,存的是3副本。

这一切的操作对客户端都是透明的,它仍然是觉得是在对同一个文件进行操作。这样就可以把海量的Web日志文件存储到了HDFS当中。

但是存储架构已经分布式了,如果只有一个节点把所有文件读出来,然后在一台机器上处理,对于海量数据来说,依然没有什么用。

所以现在更重要的是把计算也分而治之,让计算程序也分布式。也就是我们在【大话存储】多CPU架构变迁, SMP,NUMA,MPP里面说到过的,当底层架构分布式了以后,上层的应用也需要分布式

而且要尽可能让计算靠近数据,这样的好处就是不需要大规模的交换数据,降低网络流量的开销。

过程

比如说要统计URL的访问次数,可以把计算程序分发到每个节点上,然后在节点上并行计算,首先把log按照行进行分隔,提取URL,把次数初始化为1。

image.png

然后进行分组,就是把相同的URL合并同类项,也就是Shuffle

image.png

最后累积URL的访问次数

image.png

这样程序要做的就比较简单的了

  • 把分片中的URL提取出来,记数

  • 累计每个URL的访问量

而且这两个步骤不需要维护中间状态,也就是只需要根据输入得到输出即可,类似于一个函数。

这样的好处在于,程序之间不互相依赖,可以把程序部署在任意的机器上去,并行处理。

还有一个问题,如果一个程序没有运行完就宕了怎么办?

可以跟踪每个程序的状态,如果发现它不可用了,就可以在另一个机器重新运行,甚至也可以多开几个程序,让他们竞争,谁先出结果就用谁的。

计算框架——MapReduce

那么完全可以搞一个计算框架来处理呢?

所谓框架就是把重复的工作都做了,让用户的程序越简单越好。那么这个框架应该包含

  • 把程序分布在各个节点上运行

  • 监控状态

这个框架就叫MapReduce

所谓Map指的是把一个函数施加于一组数据上,然后可以得到另一组数据。

image.png

也就是说map就是数据的变换,把一个数据变成另一个。

比如说我们先对日志按行进行分割,所以程序输入就是一行一行的日志记录。

对每一行 进行处理,提取出URL,变换成键值对的形式{URL:1},这就是map操作

而Reduce操作就是给一个函数和初始值,对列表的每个一元素都调用该函数,不断折叠列表,变成一个值。类似于合并

比如初始值为0,列表是[1,2,3,4],可以依次取出列表中的值与之前累积的值进行“+”。


image.png
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,186评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,858评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,620评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,888评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,009评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,149评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,204评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,956评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,385评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,698评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,863评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,544评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,185评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,899评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,141评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,684评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,750评论 2 351

推荐阅读更多精彩内容