至于:
做了干啥?
哪个部门用?
用在什么场景?
提升什么指标?
这个指标当前是多少?
预计提升多少?
提升指标需要什么配套。
对应到工作中,就是我们常说的数据质量。数据质量是一切分析的前提,而很多公司是低估了数据采集的严谨性的。在所谓“标签扩散法”出来以后,更有一帮做数据的新人,自己都以为不要采集,只要有算法就能算出真实数据了,这就真的是自断生路了。数据质量,永远都是越高越好。
这就是标签作用的直观体现:含义丰富,使用方便。这也是为啥采集了数据,还得继续打标签的原因。标签是经过提炼,有含义的数据分类,比原始数据要有用的多。
说到标签有用,于是就有人患上了标签狂热症,疯狂打标,不管丫有用没用,有多大用,总之标签越多越好。可没有验证过效果的标签,跟没有一样。更不要提基于初级标签,再制作更复杂的二级,三级标签了。
这里还有一个小问题,看起来这个过程很简单呀,为啥还需要专业的数据分析师来做呢?业务人员自己也能总结呀。答:两个原因,一来实际商业场景中数据量大,维度多,处理起来非常耗费时间,需要专业人员来做。如果你看到你的运营不是在设计方案、选礼品、调查用户,而是一天8小时在搞数据,那这公司离倒闭也不远了。 二来,业务人员的经验很容易被短期效应打脸,进而做出错误判断(如下图所示)。业务人员KPI挂帅,容易选择短期见效的,忽视长期效应。这时候就需要数据分析师,沉住气,长期观察,沉淀经验。才能更好指导业务。