2021-04-03学习小组Day6笔记—applebear

学习小组Day6笔记—applebear


作者: applebear0507
邮箱: bethune0507@163.com

1.镜像设置安装加载三部曲

options("repos" = c(CRAN="https://mirrors.tuna.tsinghua.edu.cn/CRAN/")) 
options(BioC_mirror="https://mirrors.ustc.edu.cn/bioc/") 
install.packages("dplyr")
#BiocManager::install(“包”)
library(dplyr)

2. dplyr函数

mutate(test, new = Sepal.Length * Sepal.Width)
select(test,1)
select(test,Sepal.Length)
select(test,c(1,5))
select(test, Petal.Length, Petal.Width)
vars <- c("Petal.Length", "Petal.Width")
select(test, one_of(vars))
filter(test, Species == "setosa")
filter(test, Species == "setosa"&Sepal.Length > 5 )
filter(test, Species %in% c("setosa","versicolor"))
arrange(test, Sepal.Length)#默认从小到大排序
arrange(test, desc(Sepal.Length))#用desc从大到小
summarise(test, mean(Sepal.Length), sd(Sepal.Length))# 计算Sepal.Length的平均值和标准差
# 先按照Species分组,计算每组Sepal.Length的平均值和标准差
group_by(test, Species)
summarise(group_by(test, Species),mean(Sepal.Length), sd(Sepal.Length))
test %>% 
  group_by(Species) %>% 
  summarise(mean(Sepal.Length), sd(Sepal.Length))
  count(test,Species)
  

3. join

left_join

left-join

options(stringsAsFactors = F)

test1 <- data.frame(x = c('b','e','f','x'), 
                    z = c("A","B","C",'D'),
                    stringsAsFactors = F)
test1
##   x z
## 1 b A
## 2 e B
## 3 f C
## 4 x D
test2 <- data.frame(x = c('a','b','c','d','e','f'), 
                    y = c(1,2,3,4,5,6),
                    stringsAsFactors = F)
test2 
##   x y
## 1 a 1
## 2 b 2
## 3 c 3
## 4 d 4
## 5 e 5
## 6 f 6
left_join(test1, test2, by = 'x')
##   x z  y
## 1 b A  2
## 2 e B  5
## 3 f C  6
## 4 x D NA
left_join(test2, test1, by = 'x')
##   x y    z
## 1 a 1 
## 2 b 2    A
## 3 c 3 
## 4 d 4 
## 5 e 5    B
## 6 f 6    C

inner_join

inner_join(test1, test2, by = "x")
##   x z y
## 1 b A 2
## 2 e B 5
## 3 f C 6
inner-join

full_join

full_join( test1, test2, by = 'x')
##   x    z  y
## 1 b    A  2
## 2 e    B  5
## 3 f    C  6
## 4 x    D NA
## 5 a 
## 6 c 
## 7 d 
full-join

semi_join返回能够与y表匹配的x表所有记录semi_join

semi_join(x = test1, y = test2, by = 'x')
##   x z
## 1 b A
## 2 e B
## 3 f C
semi-join

anti_join反连接:返回无法与y表匹配的x表的所记录anti_join

anti_join(x = test2, y = test1, by = 'x')
##   x y
## 1 a 1
## 2 c 3
## 3 d 4
anti-join

cbind()函数和rbind()函数,bind_rows()函数需要两个表格列数相同,而bind_cols()函数则需要两个数据框有相同的行数

test1 <- data.frame(x = c(1,2,3,4), y = c(10,20,30,40))
test1
##   x  y
## 1 1 10
## 2 2 20
## 3 3 30
## 4 4 40
test2 <- data.frame(x = c(5,6), y = c(50,60))
test2
##   x  y
## 1 5 50
## 2 6 60
test3 <- data.frame(z = c(100,200,300,400))
test3
##     z
## 1 100
## 2 200
## 3 300
## 4 400
bind_rows(test1, test2)
##   x  y
## 1 1 10
## 2 2 20
## 3 3 30
## 4 4 40
## 5 5 50
## 6 6 60
bind_cols(test1, test3)
##   x  y   z
## 1 1 10 100
## 2 2 20 200
## 3 3 30 300
## 4 4 40 400
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。