学习小组Day6笔记—applebear
作者: applebear0507
邮箱: bethune0507@163.com
1.镜像设置安装加载三部曲
options("repos" = c(CRAN="https://mirrors.tuna.tsinghua.edu.cn/CRAN/"))
options(BioC_mirror="https://mirrors.ustc.edu.cn/bioc/")
install.packages("dplyr")
#BiocManager::install(“包”)
library(dplyr)
2. dplyr函数
mutate(test, new = Sepal.Length * Sepal.Width)
select(test,1)
select(test,Sepal.Length)
select(test,c(1,5))
select(test, Petal.Length, Petal.Width)
vars <- c("Petal.Length", "Petal.Width")
select(test, one_of(vars))
filter(test, Species == "setosa")
filter(test, Species == "setosa"&Sepal.Length > 5 )
filter(test, Species %in% c("setosa","versicolor"))
arrange(test, Sepal.Length)#默认从小到大排序
arrange(test, desc(Sepal.Length))#用desc从大到小
summarise(test, mean(Sepal.Length), sd(Sepal.Length))# 计算Sepal.Length的平均值和标准差
# 先按照Species分组,计算每组Sepal.Length的平均值和标准差
group_by(test, Species)
summarise(group_by(test, Species),mean(Sepal.Length), sd(Sepal.Length))
test %>%
group_by(Species) %>%
summarise(mean(Sepal.Length), sd(Sepal.Length))
count(test,Species)
3. join
left_join
options(stringsAsFactors = F)
test1 <- data.frame(x = c('b','e','f','x'),
z = c("A","B","C",'D'),
stringsAsFactors = F)
test1
## x z
## 1 b A
## 2 e B
## 3 f C
## 4 x D
test2 <- data.frame(x = c('a','b','c','d','e','f'),
y = c(1,2,3,4,5,6),
stringsAsFactors = F)
test2
## x y
## 1 a 1
## 2 b 2
## 3 c 3
## 4 d 4
## 5 e 5
## 6 f 6
left_join(test1, test2, by = 'x')
## x z y
## 1 b A 2
## 2 e B 5
## 3 f C 6
## 4 x D NA
left_join(test2, test1, by = 'x')
## x y z
## 1 a 1
## 2 b 2 A
## 3 c 3
## 4 d 4
## 5 e 5 B
## 6 f 6 C
inner_join
inner_join(test1, test2, by = "x")
## x z y
## 1 b A 2
## 2 e B 5
## 3 f C 6
full_join
full_join( test1, test2, by = 'x')
## x z y
## 1 b A 2
## 2 e B 5
## 3 f C 6
## 4 x D NA
## 5 a
## 6 c
## 7 d
semi_join返回能够与y表匹配的x表所有记录semi_join
semi_join(x = test1, y = test2, by = 'x')
## x z
## 1 b A
## 2 e B
## 3 f C
anti_join反连接:返回无法与y表匹配的x表的所记录anti_join
anti_join(x = test2, y = test1, by = 'x')
## x y
## 1 a 1
## 2 c 3
## 3 d 4
cbind()函数和rbind()函数,bind_rows()函数需要两个表格列数相同,而bind_cols()函数则需要两个数据框有相同的行数
test1 <- data.frame(x = c(1,2,3,4), y = c(10,20,30,40))
test1
## x y
## 1 1 10
## 2 2 20
## 3 3 30
## 4 4 40
test2 <- data.frame(x = c(5,6), y = c(50,60))
test2
## x y
## 1 5 50
## 2 6 60
test3 <- data.frame(z = c(100,200,300,400))
test3
## z
## 1 100
## 2 200
## 3 300
## 4 400
bind_rows(test1, test2)
## x y
## 1 1 10
## 2 2 20
## 3 3 30
## 4 4 40
## 5 5 50
## 6 6 60
bind_cols(test1, test3)
## x y z
## 1 1 10 100
## 2 2 20 200
## 3 3 30 300
## 4 4 40 400