算法题--图的深度拷贝

image.png

0. 链接

题目链接

1. 题目

Given a reference of a node in a connected undirected graph.

Return a deep copy (clone) of the graph.

Each node in the graph contains a val (int) and a list (List[Node]) of its neighbors.

class Node {
    public int val;
    public List<Node> neighbors;
}

Test case format:

For simplicity sake, each node's value is the same as the node's index (1-indexed). For example, the first node with val = 1, the second node with val = 2, and so on. The graph is represented in the test case using an adjacency list.

Adjacency list is a collection of unordered lists used to represent a finite graph. Each list describes the set of neighbors of a node in the graph.

The given node will always be the first node with val = 1. You must return the copy of the given node as a reference to the cloned graph.

示意图

Example 1:


示意图
Input: adjList = [[2,4],[1,3],[2,4],[1,3]]
Output: [[2,4],[1,3],[2,4],[1,3]]
Explanation: There are 4 nodes in the graph.
1st node (val = 1)'s neighbors are 2nd node (val = 2) and 4th node (val = 4).
2nd node (val = 2)'s neighbors are 1st node (val = 1) and 3rd node (val = 3).
3rd node (val = 3)'s neighbors are 2nd node (val = 2) and 4th node (val = 4).
4th node (val = 4)'s neighbors are 1st node (val = 1) and 3rd node (val = 3).

Example 2:


示意图
Input: adjList = [[]]
Output: [[]]
Explanation: Note that the input contains one empty list. The graph consists of only one node with val = 1 and it does not have any neighbors.

Example 3:

Input: adjList = []
Output: []
Explanation: This an empty graph, it does not have any nodes.

Example 4:


示意图
Input: adjList = [[2],[1]]
Output: [[2],[1]]

Constraints:

1 <= Node.val <= 100
Node.val is unique for each node.
Number of Nodes will not exceed 100.
There is no repeated edges and no self-loops in the graph.
The Graph is connected and all nodes can be visited starting from the given node.

2. 思路1: 队列+BFS

  1. 基本思路是:
  • 初始化一个队列,将任意一个节点作为起始节点,添加到队尾;初始化一个字典dic<原始节点, 拷贝节点>
  • 每次从队头pop出一个节点, 然后把它的邻居节点逐个添加到队尾 这样就确保了FIFO的特性, 达成了宽度搜索
  • 处理每个节点的时候, 遍历它的每个邻居, 判断它是否处理过(即在dic中有它), 如果没有, 则实施节点拷贝, 并添加到dic中; 且记录拷贝邻居节点成为当前拷贝节点的邻居
  • 直至队列为空, 则由于图的连通性, 所有节点都已处理完毕
  1. 分析:
  • 所有节点N都被遍历常数次, 且所有边E都被遍历常数次, 查找是否遍历过依赖dic的O(1)查找特性, 于是时间复杂度为O(N+E), 空间复杂度O(N)
  1. 复杂度
  • 时间复杂度 O(N+E)
  • 空间复杂度 O(N)

3. 代码

# coding:utf8
import collections


# Definition for a Node.
class Node:
    def __init__(self, val = 0, neighbors = None):
        self.val = val
        self.neighbors = neighbors if neighbors is not None else []


# BFS
class Solution:
    def cloneGraph(self, node: 'Node') -> 'Node':
        if node is None:
            return None

        dic = dict()
        queue = collections.deque()
        node_copy = Node(node.val)
        queue.append(node)
        dic[node] = node_copy

        while len(queue) > 0:
            head = queue.popleft()
            for neighbor in head.neighbors:
                if neighbor not in dic:
                    # 遇到新节点, 则拷贝新节点内容到目标容器
                    neighbor_copy = Node(neighbor.val)
                    queue.append(neighbor)
                    dic[neighbor] = neighbor_copy
                    # 补齐head和neighbor之间的连接关系
                    dic[head].neighbors.append(neighbor_copy)
                else:
                    # 补齐head和neighbor之间的连接关系
                    dic[head].neighbors.append(dic[neighbor])

        return node_copy


def print_graph(node1):
    queue = collections.deque()
    queue.append(node1)
    visited_set = set()
    while len(queue) > 0:
        head = queue.popleft()
        if head in visited_set:
            continue
        visited_set.add(head)
        neighbors = list()
        for neighbor in head.neighbors:
            neighbors.append(neighbor.val)
            if neighbor not in visited_set:
                queue.append(neighbor)
        print('node.val={}, neigbors: {}'.format(head.val, neighbors))


solution = Solution()

graph1 = node1 = Node(1)
node2 = Node(2)
node3 = Node(3)
node4 = Node(4)
node1.neighbors += [node2, node4]
node2.neighbors += [node1, node3]
node3.neighbors += [node2, node4]
node4.neighbors += [node1, node3]
print('input:')
print_graph(graph1)
print('*' * 10)
graph1_copy = solution.cloneGraph(graph1)
print('output:')
print_graph(graph1_copy)
print('=' * 50)

输出结果

input:
node.val=1, neigbors: [2, 4]
node.val=2, neigbors: [1, 3]
node.val=4, neigbors: [1, 3]
node.val=3, neigbors: [2, 4]
**********
output:
node.val=1, neigbors: [2, 4]
node.val=2, neigbors: [1, 3]
node.val=4, neigbors: [1, 3]
node.val=3, neigbors: [2, 4]
==================================================

4. 结果

image.png

5. 思路2: 栈+DFS

  1. 过程
  • 与BFS相比, 唯一的区别是, 循环里每次都取出栈尾元素进行处理, 这样,它遍历节点的顺序就变成了紧跟节点入栈的节奏, 先找到一条到达终点的最深路径, 再处理其他路径, 即为深度优先搜索
  1. 分析
    同BFS相同
  2. 时间复杂度 O(N+E)
  3. 空间复杂度 O(N)

6. 代码

# coding:utf8
import collections


# Definition for a Node.
class Node:
    def __init__(self, val = 0, neighbors = None):
        self.val = val
        self.neighbors = neighbors if neighbors is not None else []


# DFS
class Solution:
    def cloneGraph(self, node: 'Node') -> 'Node':
        if node is None:
            return None

        dic = dict()
        stack = list()
        node_copy = Node(node.val)
        dic[node] = node_copy
        stack.append(node)
        while len(stack) > 0:
            last = stack.pop()
            for neighbor in last.neighbors:
                if neighbor not in dic:
                    neighbor_copy = Node(neighbor.val)
                    stack.append(neighbor)
                    dic[neighbor] = neighbor_copy
                    dic[last].neighbors.append(dic[neighbor])
                else:
                    dic[last].neighbors.append(dic[neighbor])

        return node_copy


def print_graph(node1):
    queue = collections.deque()
    queue.append(node1)
    visited_set = set()
    while len(queue) > 0:
        head = queue.popleft()
        if head in visited_set:
            continue
        visited_set.add(head)
        neighbors = list()
        for neighbor in head.neighbors:
            neighbors.append(neighbor.val)
            if neighbor not in visited_set:
                queue.append(neighbor)
        print('node.val={}, neigbors: {}'.format(head.val, neighbors))


solution = Solution()

graph1 = node1 = Node(1)
node2 = Node(2)
node3 = Node(3)
node4 = Node(4)
node1.neighbors += [node2, node4]
node2.neighbors += [node1, node3]
node3.neighbors += [node2, node4]
node4.neighbors += [node1, node3]
print('input:')
print_graph(graph1)
print('*' * 10)
graph1_copy = solution.cloneGraph(graph1)
print('output:')
print_graph(graph1_copy)
print('=' * 50)

输出结果

input:
node.val=1, neigbors: [2, 4]
node.val=2, neigbors: [1, 3]
node.val=4, neigbors: [1, 3]
node.val=3, neigbors: [2, 4]
**********
output:
node.val=1, neigbors: [2, 4]
node.val=2, neigbors: [1, 3]
node.val=4, neigbors: [1, 3]
node.val=3, neigbors: [2, 4]
==================================================

7. 结果

image.png
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。