持续输出面试题之算法--树的查找

开篇介绍

大家好,我是Java最全面试题库的提裤姐,今天这篇是数据结构与算法的第八篇,主要介绍查找中的树的查找;在后续,会沿着第一篇开篇的知识线路一直总结下去,做到日更!如果我能做到百日百更,希望你也可以跟着百日百刷,一百天养成一个好习惯。

树的查找

当用线性表作为表的组织形式时,可以有三种查找法,其中二分查找效率最高。但由于二分查找要求表中结点按关键字有序,且不能用链表作存储结构,因此,当表的插入或删除操作频繁时,为维护表的有序性,势必要移动表中很多结点,这种由移动结点引起的额外时间开销,就会抵消二分查找的优点。即二分查找只适用于静态查找表。若要对动态查找表进行高效率的查找,则可以采用几种特殊的二叉树或树作为表的组织形式。

二叉排序树的查找

1.二叉排序树
二叉排序树( Binary Sort Tree称二叉查找(搜索) Binary Search Tree,
定义:二叉排序树或者是空树,或者是满足如下性质的二叉树:
①若它的左子树非空,则左子树上所有结点的值均小于根结点的值;
②若它的右子树非空,则右子树上所有结点的值均大于根结点的值;
③左、右子树本身又各是一棵二叉排序树。

上述性质简称二叉排序树性质(BST性质),故二叉排序树实际上是满足BST性质的二叉树。BST性质告诉我们,二叉排序树中任一结点x,其左(右)子树中任一结点y(若存在)的关键字必小(大)于x的关键字。如此定义的二叉排序树中各结点关键字是惟一的。但实际应用中,我们不能保证被查找的数据集中各元素的关键字互不相同,所以可将二叉排序树定义中BST性质(1)里的“小于”改为“大于等于”,或将BST质(2)里的“大于”改为“小于等于”,甚至可同时修改这两个性质。
从BST性质可推出二叉排序树的另一个重要性质:按中序遍历该树所得到的中序序列是一个递增有序序列

代码实现:

public class Search {
    public class BiTreeNode {
        int m_nValue;
        BiTreeNode m_pLeft;
        BiTreeNode m_pRight;
    }

    //二叉排序树,二叉查找树,二查搜索树,是一颗具有如下特点的树,树的左边都比它小,树的右边都比它大。
    public BiTreeNode BinaryBiSearch(BiTreeNode pHead,int b){
        if(pHead==null)
            return null;
        if(pHead.m_nValue==b)
            return pHead;
        if(pHead.m_pLeft!=null)
            return BinaryBiSearch(pHead.m_pLeft,b);
        if(pHead.m_pRight!=null)
            return BinaryBiSearch(pHead.m_pRight,b);
        return null;
    }
}

B树:

在B-树中查找给定关键字的方法是,首先把根结点取来,在根结点所包含的关键字K1,…,Kn查找给定的关键字(可用顺序查找或二分查找法),若找到等于给定值的关键字,则查找成功;否则,一定可以确定要查找的关键字在Ki与Ki+1之间,Pi为指向子树根节点的指针,此时取指针Pi所指的结点继续查找,直至找到,或指针Pi为空时查找失败。


image.png

以上图为例:若查询的数值为5:
第一次磁盘IO:在内存中定位(与17、35比较),比17小,左子树;
第二次磁盘IO:在内存中定位(与8、12比较),比8小,左子树;
第三次磁盘IO:在内存中定位(与3、5比较),找到5,终止。
由于B树相对于二叉树来说矮胖了许多,所以它所涉及的IO操作也相对少了许多。不过根据我们上面的分析,其在查找数据的时候并没有减少比较次数。但是我们知道,我们在比较数据的时候是在内存中进行的,所以相对来说时间上会更加迅速,几乎可以忽略。
插入流程:

image.png

在下面的B树中插入key:
第一步:检索key插入的节点位置如上图所示,在3,5之间
第二步:判断节点中的关键码个数节点3,5已经是两元素节点,无法再增加(已经 = 3-1)。父亲节点 2, 6 也是两元素节点,也无法再增加。根节点9是单元素节点,可以升级为两元素节点。
第三步:结点分裂拆分节点3,5与节点2,6,让根节点9升级为两元素节点4,9。节点6独立为根节点的第二个孩子。


image.png

删除流程:

第一步:判断该元素是否在叶子结点上。该元素在叶子节点上,可以直接删去,但是删除之后,中间节点12只有一个孩子,不符合B树的定义:每个中间节点都包含k个孩子,(其中 ceil(m/2) <= k <= m)所以需要调整;
第二步:判断其左右兄弟结点中有“多余”的关键字,即:原关键字个数n>=ceil(m/2) - 1;显然结点11的右兄弟节点中有多余的关键字。那么可将右兄弟结点中最小关键字上移至双亲结点。而将双亲结点中小于该上移关键字的关键字下移至被删关键字所在结点中即可


image.png
image.png
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 219,701评论 6 508
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,649评论 3 396
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 166,037评论 0 356
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,994评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,018评论 6 395
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,796评论 1 308
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,481评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,370评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,868评论 1 319
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,014评论 3 338
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,153评论 1 352
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,832评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,494评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,039评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,156评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,437评论 3 373
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,131评论 2 356