无监督一致性聚类

Consensus Clustering(一致性聚类),无监督聚类方法,可根据不同组学数据集将样本区分成几个亚型,从而发现新的疾病亚型或者对不同亚型进行比较分析。
Consensus Clustering的思路是:采用重抽样方法抽取一定样本的数据集,指定聚类数目k并计算不同聚类数目下的合理性(PAC方法)

NOTE : PAC可用来优化聚类模型选择最优的K值

代码如下:


# 这里不建议使用模拟数据,结果会很差
# 1.获取示例数据
library(ALL)
data(ALL)
df <- exprs(ALL) 

# 2.筛选基因(通过中位数绝对偏差度量,MAD)
mads <- apply(df,1,mad) # MAD测度
df <- df[rev(order(mads))[1:5000],] #提取前5000个基因

# 3.标准化
df <-  sweep(df,1, apply(df,1,median,na.rm=T)) # 在行的方向上减去最小值,默认是减法

# 4.运行ConsensusClusterPlus
library(ConsensusClusterPlus)
maxK <-  6 # 选一个K值进行尝试
results <-  ConsensusClusterPlus(df,
                               maxK = maxK,
                               reps = 1000,              # 抽样次数(一般1000或更多)
                               pItem = 0.8,              # 抽样比例
                               pFeature = 1,
                               clusterAlg = "pam",       # 聚类方法
                               distance="pearson",       # 距离计算方法
                               title="~/test_ty/Rtest/", # 结果保存路径
                               innerLinkage="complete",  # 这里不建议使用默认的方法"average"
                               plot="png")               # 结果保存形式

主要结果图如下:

结果.png

可以看出,K值为4的时候,聚类结果最好。

当然,PAC方法可以计算出最佳的K值,代码如下:

# 5.用PAC的方法确定最佳聚类数
#   面积最小值对应K为最佳K
Kvec = 2:maxK
x1 = 0.1; x2 = 0.9        # threshold defining the intermediate sub-interval
PAC = rep(NA,length(Kvec)) 
names(PAC) = paste("K=",Kvec,sep="")  # from 2 to maxK
for(i in Kvec){
M = results[[i]]$consensusMatrix
Fn = ecdf(M[lower.tri(M)])          # M 为计算出共识矩阵
PAC[i-1] = Fn(x2) - Fn(x1)
} 

optK = Kvec[which.min(PAC)]  # 理想的K值


icl = calcICL(results,
            title="~/test_ty/Rtest/",
            plot="pdf")

结果如下:

最佳K.png

最佳的K就是4

包括从icl的图中可以看出,K=4时稳定性最好

结果.png
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,904评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,581评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,527评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,463评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,546评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,572评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,582评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,330评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,776评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,087评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,257评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,923评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,571评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,192评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,436评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,145评论 2 366
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,127评论 2 352