Logistic回归

一、简介
logistic回归是经典的二分类方法,其主要思想是: 根据现有数据对分类边界线(Decision Boundary)建立回归公式,以此进行分类。

二、重要概念

  1. logistic分布:
    (1)概率分布函数F(x)和概率密度函数f(x)如下:
        F(x) = P(X<=x) = \frac{1}{1+e^{-z}}
         f(x) = \frac{1}{\gamma(1+e^{-z})}
    (2)logistic分布的图:
    QQ20180913-0.JPG

    可以看出来F(x)的概率分布(右图)和sigmoid函数是类似的,而f(x)(左图)是正态分布的。

2.logistic“回归”
    假设现在有一些数据点,我们用一条直线对这些点进行拟合(这条直线称为最佳拟合直线),这个拟合的过程就叫做回归,就是{z=w^T*x}这条直线。而实际上,我们是对z加一个非线性函数sigmoid,用来做分类。

  1. 二值型输出分类函数Sigmoid
    我们想要的函数应该是: 能接受所有的输入然后预测出类别。例如,在两个类的情况下,上述函数输出 0 或 1.或许你之前接触过具有这种性质的函数,该函数称为 海维塞得阶跃函数(Heaviside step function),或者直接称为 单位阶跃函数。然而,海维塞得阶跃函数的问题在于: 该函数在跳跃点上从 0 瞬间跳跃到 1,这个瞬间跳跃过程有时很难处理。幸好,另一个函数也有类似的性质(可以输出 0 或者 1 的性质),且数学上更易处理,这就是 Sigmoid 函数,又叫logistic函数。sigmoid的计算公式和函数图像如下:


    image.png

image.png

至于为什么要用sigmoid函数作为激活函数呢?
参考这篇文章:
https://blog.csdn.net/wolfblood_zzx/article/details/74453434

4.logistic的代价函数(cost function)
为什么不用平方损失函数,而选择交叉熵(极大似然估计的方法)呢?
(1)平方损失函数


image.png

这里的h函数就是sigmoid函数。
这里的平方损失函数J 是非凸的,而非凸函数存在多个局部最优值,不利于梯度下降法求全局最有值。
如下是凸函数和非凸函数:


image.png

(2)所以用交叉熵表示的损失函数
image.png

这是用log极大似然估计推导出来的公式。
这个J函数的凸函数,函数图像如下:
image.png

image.png

可以看出来,图中只有一个局部最优解。

  1. 梯度下降和梯度上升
    这两个是说的一个东西,梯度下降是说对于cost function,我们用地图下降求最小值;而对于objective function 我们用梯度上升求最大似然估计的值。
    梯度下降的思想:
    要找到某函数的最小值,最好的方法是沿着该函数的梯度方向探寻。梯度分为梯度的方向和数值,梯度的方向是由导数决定,而数值是由步长和导数共同决定的。
    参数迭代的公式如下:


    image.png

6.局部最优现象


image.png

上图表示参数 θ 与误差函数 J(θ) 的关系图 (这里的误差函数是损失函数,所以我们要最小化损失函数),红色的部分是表示 J(θ) 有着比较高的取值,我们需要的是,能够让 J(θ) 的值尽量的低。也就是深蓝色的部分。θ0,θ1 表示 θ 向量的两个维度(此处的θ0,θ1是x0和x1的系数,也对应的是上文w0和w1)。

可能梯度下降的最终点并非是全局最小点,可能是一个局部最小点,如我们上图中的右边的梯度下降曲线,描述的是最终到达一个局部最小点,这是我们重新选择了一个初始点得到的。

看来我们这个算法将会在很大的程度上被初始点的选择影响而陷入局部最小点

参考文献:

  1. 机器学习实战:
    https://github.com/apachecn/AiLearning/blob/dev/blog/ml/5.Logistic%E5%9B%9E%E5%BD%92.md

  2. 吴恩达机器学习课程
    https://study.163.com/course/courseMain.htm?courseId=1004570029

3.统计学习方法

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,406评论 6 503
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,732评论 3 393
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,711评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,380评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,432评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,301评论 1 301
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,145评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,008评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,443评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,649评论 3 334
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,795评论 1 347
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,501评论 5 345
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,119评论 3 328
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,731评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,865评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,899评论 2 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,724评论 2 354

推荐阅读更多精彩内容