spark sql对seq值的包装

spark sql对seq(s1, s2, s3, ...)值的包装,seq的每个元素si会被包装成一个Row
如果si为一个简单值,则生成一个只包含一个value列的Row
如果si为一个N-Tuple,则生成一个包含N列的Row

特别的,如果N-Tuple是一元组,则视为非元组,即生成一个只包含一个value列的Row

scala> Seq(("bluejoe"),("alex")).toDF().show
+-------+
|  value|
+-------+
|bluejoe|
|   alex|
+-------+

scala> Seq("bluejoe","alex").toDF().show
+-------+
|  value|
+-------+
|bluejoe|
|   alex|
+-------+

scala> Seq(("bluejoe",1),("alex",0)).toDF().show
+-------+---+
|     _1| _2|
+-------+---+
|bluejoe|  1|
|   alex|  0|
+-------+---+

我特意编写了如下测试用例,验证了这种情况:

    @Test
    def testEncoderSchema() {
        val spark = SparkSession.builder.master("local[4]")
            .getOrCreate();
        val sqlContext = spark.sqlContext;
        import sqlContext.implicits._
        import org.apache.spark.sql.catalyst.encoders.encoderFor
        val schema1 = encoderFor[String].schema;
        val schema2 = encoderFor[(String)].schema;
        val schema3 = encoderFor[((String))].schema;

        Assert.assertEquals(schema1, schema2);
        Assert.assertEquals(schema1, schema3);
    }
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
【社区内容提示】社区部分内容疑似由AI辅助生成,浏览时请结合常识与多方信息审慎甄别。
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

相关阅读更多精彩内容

友情链接更多精彩内容