机器学习--梯度下降特征归一化

一 例子:
根据人的身高和体重预测人的健康指数,假设有如下原始样本数据是四维的

20180131115933475.jpg

20180131115946820.jpg

从上面两个坐标图可以看出,样本在数据值上的分布差距是不一样的,但是其几何距离是一致的。而标准化就是一种对样本数据在不同维度上进行一个伸缩变化(而不改变数据的几何距离),也就是不改变原始数据的信息(分布)。这样的好处就是在进行特征提取时,忽略掉不同特征之间的一个度量,而保留样本在各个维度上的信息(分布)。

20180131120026727.jpg

从采用大单位的身高和体重这两个特征来看,如果采用标准化,不改变样本在这两个维度上的分布,则左图还是会保持二维分布的一个扁平性;而采用归一化则会在不同维度上对数据进行不同的伸缩变化(归一区间,会改变数据的原始距离,分布,信息),使得其呈类圆形。虽然这样样本会失去原始的信息,但这防止了归一化前直接对原始数据进行梯度下降类似的优化算法时最终解被数值大的特征所主导。归一化之后,各个特征对目标函数的影响权重是一致的。这样的好处是在提高迭代求解的精度。

二 归一化
该问题的出现是因为我们没有同等程度的看待各个特征,即我们没有将各个特征量化到统一的区间。
数据标准化(归一化)处理是数据挖掘的一项基础工作,不同评价指标往往具有不同的量纲和量纲单位,这样的情况会影响到数据分析的结果,为了消除指标之间的量纲影响,需要进行数据标准化处理,以解决数据指标之间的可比性。原始数据经过数据标准化处理后,各指标处于同一数量级,适合进行综合对比评价。以下是两种常用的归一化方法:
Standardization
Standardization又称为Z-score normalization,量化后的特征将服从标准正态分布:


20170211185838905.gif

其中,u和delta分别为对应特征的均值和标准差。量化后的特征将分布在[-1, 1]区间。

Min-Max Scaling
Min-Max Scaling又称为Min-Max normalization, 特征量化的公式为:


20170211210209071.gif

量化后的特征将分布在区间。

大多数机器学习算法中,会选择Standardization来进行特征缩放,但是,Min-Max Scaling也并非会被弃置一地。在数字图像处理中,像素强度通常就会被量化到[0,1]区间,在一般的神经网络算法中,也会要求特征被量化[0,1]区间。进行了特征缩放以后,代价函数的轮廓会是“偏圆”的,梯度下降过程更加笔直,收敛更快性能因此也得到提升:
代码:

import numpy as np

__author__ = 'liyan'

X = 1000 * np.random.rand(100, 1)
#------------归一化处理数据--------------

def normalize(X):
    m, n = X.shape
    # 归一化每一个特征
    for j in range(n):
        features = X[:,j]
        minVal = features.min(axis=0)
        maxVal = features.max(axis=0)
        diff = maxVal - minVal
        if diff != 0:
           X[:,j] = (features-minVal)/diff
        else:
           X[:,j] = 0
    return X
X = normalize(X)

y = 4 + 3 * X + np.random.randn(100, 1)
X_b = np.c_[np.ones((100, 1)), X]
# print(X_b)

learning_rate = 0.1
n_iterations = 10000#迭代次数
m = 100#100个样本

# 1,初始化theta,w0...wn
theta = np.random.randn(2, 1)
count = 0

# 4,不会设置阈值,之间设置超参数,迭代次数,迭代次数到了,我们就认为收敛了
for iteration in range(n_iterations):
    count += 1
    # 2,接着求梯度gradient
    gradients = 1/m * X_b.T.dot(X_b.dot(theta)-y)
    # 3,应用公式调整theta值,theta_t + 1 = theta_t - grad * learning_rate
    theta = theta - learning_rate * gradients
print(count)
print(theta)

  1. 没有归一化结果:


    image.png
  2. 归一化后的结果:


    image.png
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,047评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,807评论 3 386
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,501评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,839评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,951评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,117评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,188评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,929评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,372评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,679评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,837评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,536评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,168评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,886评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,129评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,665评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,739评论 2 351

推荐阅读更多精彩内容