一 例子:
根据人的身高和体重预测人的健康指数,假设有如下原始样本数据是四维的
从上面两个坐标图可以看出,样本在数据值上的分布差距是不一样的,但是其几何距离是一致的。而标准化就是一种对样本数据在不同维度上进行一个伸缩变化(而不改变数据的几何距离),也就是不改变原始数据的信息(分布)。这样的好处就是在进行特征提取时,忽略掉不同特征之间的一个度量,而保留样本在各个维度上的信息(分布)。
从采用大单位的身高和体重这两个特征来看,如果采用标准化,不改变样本在这两个维度上的分布,则左图还是会保持二维分布的一个扁平性;而采用归一化则会在不同维度上对数据进行不同的伸缩变化(归一区间,会改变数据的原始距离,分布,信息),使得其呈类圆形。虽然这样样本会失去原始的信息,但这防止了归一化前直接对原始数据进行梯度下降类似的优化算法时最终解被数值大的特征所主导。归一化之后,各个特征对目标函数的影响权重是一致的。这样的好处是在提高迭代求解的精度。
二 归一化
该问题的出现是因为我们没有同等程度的看待各个特征,即我们没有将各个特征量化到统一的区间。
数据标准化(归一化)处理是数据挖掘的一项基础工作,不同评价指标往往具有不同的量纲和量纲单位,这样的情况会影响到数据分析的结果,为了消除指标之间的量纲影响,需要进行数据标准化处理,以解决数据指标之间的可比性。原始数据经过数据标准化处理后,各指标处于同一数量级,适合进行综合对比评价。以下是两种常用的归一化方法:
Standardization
Standardization又称为Z-score normalization,量化后的特征将服从标准正态分布:
其中,u和delta分别为对应特征的均值和标准差。量化后的特征将分布在[-1, 1]区间。
Min-Max Scaling
Min-Max Scaling又称为Min-Max normalization, 特征量化的公式为:
量化后的特征将分布在区间。
大多数机器学习算法中,会选择Standardization来进行特征缩放,但是,Min-Max Scaling也并非会被弃置一地。在数字图像处理中,像素强度通常就会被量化到[0,1]区间,在一般的神经网络算法中,也会要求特征被量化[0,1]区间。进行了特征缩放以后,代价函数的轮廓会是“偏圆”的,梯度下降过程更加笔直,收敛更快性能因此也得到提升:
代码:
import numpy as np
__author__ = 'liyan'
X = 1000 * np.random.rand(100, 1)
#------------归一化处理数据--------------
def normalize(X):
m, n = X.shape
# 归一化每一个特征
for j in range(n):
features = X[:,j]
minVal = features.min(axis=0)
maxVal = features.max(axis=0)
diff = maxVal - minVal
if diff != 0:
X[:,j] = (features-minVal)/diff
else:
X[:,j] = 0
return X
X = normalize(X)
y = 4 + 3 * X + np.random.randn(100, 1)
X_b = np.c_[np.ones((100, 1)), X]
# print(X_b)
learning_rate = 0.1
n_iterations = 10000#迭代次数
m = 100#100个样本
# 1,初始化theta,w0...wn
theta = np.random.randn(2, 1)
count = 0
# 4,不会设置阈值,之间设置超参数,迭代次数,迭代次数到了,我们就认为收敛了
for iteration in range(n_iterations):
count += 1
# 2,接着求梯度gradient
gradients = 1/m * X_b.T.dot(X_b.dot(theta)-y)
# 3,应用公式调整theta值,theta_t + 1 = theta_t - grad * learning_rate
theta = theta - learning_rate * gradients
print(count)
print(theta)
-
没有归一化结果:
-
归一化后的结果: