My code:
public class Solution {
private int row = 0;
private int col = 0;
public int longestIncreasingPath(int[][] matrix) {
if (matrix == null || matrix.length == 0 || matrix[0].length == 0) {
return 0;
}
row = matrix.length;
col = matrix[0].length;
int max = 1;
int[][] cache = new int[row][col];
for (int i = 0; i < row; i++) {
for (int j = 0; j < col; j++) {
if (cache[i][j] != 0) {
max = Math.max(max, cache[i][j]);
continue;
}
else {
cache[i][j] = helper(matrix, cache, i, j);
max = Math.max(max, cache[i][j]);
}
}
}
return max;
}
private int helper(int[][] matrix, int[][] cache, int i, int j) {
if (cache[i][j] != 0) {
return cache[i][j];
}
else {
int sum = 0;
if (inBound(i + 1, j) && matrix[i][j] < matrix[i + 1][j]) {
sum = Math.max(sum, helper(matrix, cache, i + 1, j));
}
if (inBound(i - 1, j) && matrix[i][j] < matrix[i - 1][j]) {
sum = Math.max(sum, helper(matrix, cache, i - 1, j));
}
if (inBound(i, j + 1) && matrix[i][j] < matrix[i][j + 1]) {
sum = Math.max(sum, helper(matrix, cache, i, j + 1));
}
if (inBound(i, j - 1) && matrix[i][j] < matrix[i][j - 1]) {
sum = Math.max(sum, helper(matrix, cache, i, j - 1));
}
sum += 1;
cache[i][j] = sum;
return sum;
}
}
private boolean inBound(int i, int j) {
if (i >= 0 && i < row && j >= 0 && j < col) {
return true;
}
else {
return false;
}
}
}
这道题目并不是很难。
dfs + cache 就可以解决。
速度有点慢。看了答案。发现实现方法跟我差不多。他跑15ms, 我跑 39ms. 也差不多。估计实现细节上差了点。
reference:
https://discuss.leetcode.com/topic/34835/15ms-concise-java-solution/8
Anyway, Good luck, Richardo! -- 08/28/2016