TensorFlow2简单入门-加载及预处理文本


博主: 明天依旧可好
代码:VX公众H「明天依旧可好」内回复04
思维导图完整版:回复tf2思维导图

import tensorflow as tf
import tensorflow_datasets as tfds
import os

print(tf.__version__)
"""
输出:2.5.0-dev20201226
"""

数据下载

import pathlib

DIRECTORY_URL = 'https://storage.googleapis.com/download.tensorflow.org/data/illiad/'
FILE_NAMES = ['cowper.txt', 'derby.txt', 'butler.txt']

for name in FILE_NAMES:
    text_dir = tf.keras.utils.get_file(name, origin=DIRECTORY_URL+name)
    print(text_dir)
    
parent_dir = os.path.dirname(text_dir)
"""
输出:
C:\Users\Administrator\.keras\datasets\cowper.txt
C:\Users\Administrator\.keras\datasets\derby.txt
C:\Users\Administrator\.keras\datasets\butler.txt
"""

将文本加载到数据集中

迭代整个文件,将整个文件加载到自己的数据集中。

每个样本都需要单独标记,所以请使用 tf.data.Dataset.map 来为每个样本设定标签。这将迭代数据集中的每一个样本并且返回( example, label )对。

def labeler(example, index):
    return example, tf.cast(index, tf.int64)  

labeled_data_sets = []

for i, file_name in enumerate(FILE_NAMES):
    lines_dataset = tf.data.TextLineDataset(os.path.join(parent_dir, file_name))
    labeled_dataset = lines_dataset.map(lambda ex: labeler(ex, i))
    labeled_data_sets.append(labeled_dataset)

将这些标记的数据集合并到一个数据集中,然后对其进行随机化操作。

BUFFER_SIZE = 50000

#将所有数据合并到一个数据集当中
all_labeled_data = labeled_data_sets[0]
for labeled_dataset in labeled_data_sets[1:]:
    all_labeled_data = all_labeled_data.concatenate(labeled_dataset)

#将数据进行打乱
all_labeled_data = all_labeled_data.shuffle(
    BUFFER_SIZE, reshuffle_each_iteration=False)
#显示前5条数据
for ex in all_labeled_data.take(5):
    print(ex)
"""
(<tf.Tensor: shape=(), dtype=string, numpy=b'Instructed duly, and himself, his steps'>, <tf.Tensor: shape=(), dtype=int64, numpy=0>)
(<tf.Tensor: shape=(), dtype=string, numpy=b'not forget the threat that he had made Achilles, and called his trusty'>, <tf.Tensor: shape=(), dtype=int64, numpy=2>)
(<tf.Tensor: shape=(), dtype=string, numpy=b"Standing encompass'd by his dauntless troops,">, <tf.Tensor: shape=(), dtype=int64, numpy=0>)
(<tf.Tensor: shape=(), dtype=string, numpy=b'held Oechalia, the city of Oechalian Eurytus, these were commanded by'>, <tf.Tensor: shape=(), dtype=int64, numpy=2>)
(<tf.Tensor: shape=(), dtype=string, numpy=b'him."'>, <tf.Tensor: shape=(), dtype=int64, numpy=2>)
"""

将文本编码成数字

建立词汇表

#features这个模块已经被官方弃用,等待更新吧
# tokenizer = tfds.features.text.Tokenizer()
#可暂时使用下面这个进行调用
tokenizer = tfds.deprecated.text.Tokenizer()

vocabulary_set = set()
for text_tensor, _ in all_labeled_data:
    some_tokens = tokenizer.tokenize(text_tensor.numpy())
    vocabulary_set.update(some_tokens)

vocab_size = len(vocabulary_set)
vocab_size
"""
输出:17178
"""

通过传递 vocabulary_set 到 tfds.features.text.TokenTextEncoder 来构建一个编码器。编码器的 encode 方法传入一行文本,返回一个整数列表。

encoder = tfds.deprecated.text.TokenTextEncoder(vocabulary_set)

def encode(text_tensor, label):
    encoded_text = encoder.encode(text_tensor.numpy())
    return encoded_text, label

def encode_map_fn(text, label):
    #py_func不能设置返回的tensors的shape
    encoded_text, label = tf.py_function(encode, 
                                       inp=[text, label], 
                                       Tout=(tf.int64, tf.int64))
    encoded_text.set_shape([None])
    label.set_shape([])
    return encoded_text, label

all_encoded_data = all_labeled_data.map(encode_map_fn)

#显示前5条数据
for ex in all_encoded_data.take(5):
    print(ex)
"""
输出:
(<tf.Tensor: shape=(6,), dtype=int64, numpy=array([ 2724,  4813, 14154,  7272, 12376, 16442], dtype=int64)>, <tf.Tensor: shape=(), dtype=int64, numpy=0>)
(<tf.Tensor: shape=(13,), dtype=int64, numpy=
array([12719,  5246,  4778,  6683,   411, 11103,  4013, 14029, 13412,
       14154, 14991, 12376,  4255], dtype=int64)>, <tf.Tensor: shape=(), dtype=int64, numpy=2>)
(<tf.Tensor: shape=(7,), dtype=int64, numpy=array([14472, 14592,  8885,  4068, 12376, 16337, 11432], dtype=int64)>, <tf.Tensor: shape=(), dtype=int64, numpy=0>)
(<tf.Tensor: shape=(11,), dtype=int64, numpy=
array([10492,  5873,  4778, 14421, 15779,  9325,  4625, 15330,  9176,
        2358,  4068], dtype=int64)>, <tf.Tensor: shape=(), dtype=int64, numpy=2>)
(<tf.Tensor: shape=(1,), dtype=int64, numpy=array([4992], dtype=int64)>, <tf.Tensor: shape=(), dtype=int64, numpy=2>)
"""

注: 本文参考了官网并对其进行了删减以及部分注释与修改

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,014评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,796评论 3 386
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,484评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,830评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,946评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,114评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,182评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,927评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,369评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,678评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,832评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,533评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,166评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,885评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,128评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,659评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,738评论 2 351

推荐阅读更多精彩内容