Lecture 15 | (4/5) Recurrent Neural Networks

also offered as (Old) Lecture 16 | Connectionist Temporal Classification
https://www.youtube.com/watch?v=A8IhGQCurPc&list=PLp-0K3kfddPzNdZPX4p0lVi6AcDXBofuf&index=16

image.png

pretend that the output shows up for more than 1 time, and divgergence is everywhere
however, this assumption may not hold in question answering: answer will not be reached before the question is completed
two assumptions here: output is order-synchronous with input, and output number is smaller than input number
just look at the row we are interested in

(unfinished)

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
【社区内容提示】社区部分内容疑似由AI辅助生成,浏览时请结合常识与多方信息审慎甄别。
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

友情链接更多精彩内容