原子类:无锁工具类的典范

利用原子类解决累加器问题

public class Test {
  AtomicLong count = 
    new AtomicLong(0);
  void add10K() {
    int idx = 0;
    while(idx++ < 10000) {
      count.getAndIncrement();
    }
  }
}

无锁方案相对互斥锁方案,最大的好处就是性能。互斥锁方案为了保证互斥性,需要执行加锁、解锁操作,而加锁、解锁操作本身就消耗性能;同时拿不到锁的线程还会进入阻塞状 态,进而触发线程切换,线程切换对性能的消耗也很大。 相比之下,无锁方案则完全没有加锁、解锁的性能消耗,同时还能保证互斥性。

无锁方案的实现原理

其实原子类性能高的秘密很简单,硬件支持而已。CPU 为了解决并发问题,提供了 CAS 指 令(CAS,全称是 Compare And Swap,即“比较并交换”)。CAS 指令包含 3 个参 数:共享变量的内存地址 A、用于比较的值 B 和共享变量的新值 C;并且只有当内存中地 址 A 处的值等于 B 时,才能将内存中地址 A 处的值更新为新值 C。作为一条 CPU 指令, CAS 指令本身是能够保证原子性的。

使用 CAS 来解决并发问题,一般都会伴随着自旋,而所谓自旋,其实就是循环尝试。例如,实现一个线程安全的count += 1操作,“CAS+ 自旋”的实现方案如下所示,首先计 算 newValue = count+1,如果 cas(count,newValue) 返回的值不等于 count,则意味着 线程在执行完代码1处之后,执行代码2处之前,count 的值被其他线程更新过。那此时 该怎么处理呢?可以采用自旋方案,就像下面代码中展示的,可以重新读 count 最新的值 来计算 newValue 并尝试再次更新,直到成功。

class SimulatedCAS{
  volatile int count;
  // 实现 count+=1
  addOne(){
    do {
      newValue = count+1; //①
    }while(count !=
      cas(count,newValue) //②
  }
  // 模拟实现 CAS,仅用来帮助理解
  synchronized int cas(
    int expect, int newValue){
    // 读目前 count 的值
    int curValue = count;
    // 比较目前 count 值是否 == 期望值
    if(curValue == expect){
      // 如果是,则更新 count 的值
      count= newValue;
    }
    // 返回写入前的值
    return curValue;
  }
}

tips

ABA 问 题

前面我们提到“如果 cas(count,newValue) 返回的值不等于count,意味着线程在执行完 代码1处之后,执行代码2处之前,count 的值被其他线程更新过”,那如果 cas(count,newValue) 返回的值等于count,是否就能够认为 count 的值没有被其他线程更新过呢?显然不是的,假设 count 原本是 A,线程 T1 在执行完代码1处之后,执行代 码2处之前,有可能 count 被线程 T2 更新成了 B,之后又被 T3 更新回了 A,这样线程 T1 虽然看到的一直是 A,但是其实已经被其他线程更新过了,这就是 ABA 问题。
可能大多数情况下我们并不关心 ABA 问题,例如数值的原子递增,但也不能所有情况下都 不关心,例如原子化的更新对象很可能就需要关心 ABA 问题,因为两个 A 虽然相等,但是 第二个 A 的属性可能已经发生变化了。所以在使用 CAS 方案的时候,一定要先 check 一 下。

原子类概览

原子类组成概览图
1. 原子化的基本数据类型
2. 原子化的对象引用类型

对象引用的更新需要重点关注 ABA 问题,AtomicStampedReference 和 AtomicMarkableReference 这两个原子类可以解决 ABA 问题。
解决 ABA 问题的思路其实很简单,增加一个版本号维度就可以了,这个和乐观锁机制很类似,每次执行 CAS 操作,附加再更新一个版本号,只要保证版本号是递增的,那么即便 A 变成 B 之后再变回 A,版本号也不会变回来)。

3. 原子化数组

可以原子化地更新数组里面的每一个元素。

4. 原子化对象属性更新器

可以原子化地更新对象的属性

5. 原子化的累加器

仅仅用来执行累加操作,相比原子化的基本数据类型,速度更快,但是不支持 compareAndSet() 方法。如果你仅仅需要累加操作,使用原子化的累加器性能会更好。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 218,284评论 6 506
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,115评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,614评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,671评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,699评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,562评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,309评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,223评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,668评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,859评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,981评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,705评论 5 347
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,310评论 3 330
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,904评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,023评论 1 270
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,146评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,933评论 2 355

推荐阅读更多精彩内容