数学函数Markdown写法 :
1. https://www.cnblogs.com/fr-ruiyang/p/11317074.html
2. https://blog.csdn.net/qq_35451572/article/details/80303228
3. https://blog.csdn.net/weixin_45459911/article/details/106711996 \hat{\beta}
关于笔记,因为平时上数学lecture的习惯,我习惯于和他人一样,边阅读,边记笔记,但这样很不专注。
理解数学,和摘抄重点,这两者无法同时兼顾,但又生怕错过任何一点。
先理解,再摘抄重点,看似是一件更加专注且高效的行为,但实际上要花去更多的时间。
这样的行为对我本身不利,但这是有意义的。
与其看数学公式,看这些符号如何摆,摆在哪里,这些其实毫无意义,
不如去理解其中抽象的概念,数学家其实也只是把符号随便乱摆,这样看起来方便一些罢了,
如果不理解概念是不可能会做题的,哪怕背下来也是如此,题目只是为了帮助理解概念。
布里斯托大学:Bayesian Modelling 和 《贝叶斯统计》
Program
• Chapter 1: Introduction -〉《贝叶斯统计》第一章
• Chapter 2: Decision theory and Bayesian inference -》《贝叶斯统计》4-5章
• Chapter 3: From prior information to prior distribution-》《贝叶斯统计》4-5章
• Chapter 4: Hypothesis testing and credible sets-》《贝叶斯统计》第二章
• Chapter 5: Introduction to Markov chain Monte Carlo methods-》《贝叶斯统计》第七章
• Chapter 6: Bayesian networks-〉 未知
• Chapter 7: Hierarchical models-》怀疑在3.5“多层先验”
• Chapter 8: Bayesian asymptotics-〉
• Chapter 9: Model Choice
References
• Chapter 2:
– Chapters 2 and 4 of Robert, C. (2007). The Bayesian choice: from decision-theoretic foundations to computational implementation. Springer Science & Business Media.
• Chapter 3:
– Chapter 3 of Robert, C. (2007). The Bayesian choice: from decision-theoretic foundations to
computational implementation. Springer Science & Business Media.
• Chapter 4:
– Chapter 5 of Robert, C. (2007). The Bayesian choice: from decision-theoretic foundations to
computational implementation. Springer Science & Business Media.
• Chapter 5:
– Chapters 6 and 7 of Robert, C., & Casella, G. (2013). Monte Carlo statistical methods.
Springer Science & Business Media.
– Chapter 1 of Norris, J. R. (1998). Markov chains (No. 2). Cambridge university press.
• Chapter 6:
– Ruggeri, F., Faltin, F., & Kenett, R. (2007). Bayesian networks. Encyclopedia of Statistics in
Quality And Reliability.
• Chapter 7:
– Chapter 10 of Robert, C. (2007). The Bayesian choice: from decision-theoretic foundations to
computational implementation. Springer Science & Business Media.
– Chapter 10 of Lunn, D., Jackson, C., Best, N., Spiegelhalter, D., & Thomas, A. (2012). The
BUGS book: A practical introduction to Bayesian analysis. Chapman and Hall/CRC.
• Chapter 8:
– Kleijn, B. J. K., & Van der Vaart, A. W. (2012). The Bernstein-von-Mises theorem under
misspecification. Electronic Journal of Statistics, 6, 354-381.
– Chapter 1 of Ghosh J.K.,& Raamoorthi (2003). Bayesian Nonparamterics. Springer Series in
Statistics.
• Chapter 9:
– Chapter 7 of Robert, C. (2007). The Bayesian choice: from decision-theoretic foundations to
computational implementation. Springer Science & Business Media.