HTTPS的安全原理

  • 数据隐私性:内容经过对称加密,每个连接生成一个唯一的加密密钥
  • 数据完整性:内容传输经过完整性校验
  • 身份认证:第三方无法伪造服务端(客户端)身份
一、HTTPS如何解决HTTP上述问题?

HTTPS并非是应用层的一种新协议。只是HTTP通信接口部分用SSL和TLS协议代替而已。

通常,HTTP直接和TCP通信。当使用SSL时,则演变成先和SSL通信,再由SSL和TCP通信了。简言之,所谓HTTPS,其实就是身披SSL协议这层外壳的HTTP。

在采用SSL后,HTTP就拥有了HTTPS的加密、证书和完整性保护这些功能。也就是说HTTP加上加密处理和认证以及完整性保护后即是HTTPS。

image

HTTPS 协议的主要功能基本都依赖于 TLS/SSL 协议,TLS/SSL 的功能实现主要依赖于三类基本算法:散列函数 、对称加密和非对称加密,其利用非对称加密实现身份认证和密钥协商,对称加密算法采用协商的密钥对数据加密,基于散列函数验证信息的完整性。

image

1、解决内容可能被窃听的问题——加密

方法1.对称加密

这种方式加密和解密同用一个密钥。加密和解密都会用到密钥。没有密钥就无法对密码解密,反过来说,任何人只要持有密钥就能解密了。

以对称加密方式加密时必须将密钥也发给对方。可究竟怎样才能安全地转交?在互联网上转发密钥时,如果通信被监听那么密钥就可会落人攻击者之手,同时也就失去了加密的意义。另外还得设法安全地保管接收到的密钥。

方法2.非对称加密

公开密钥加密使用一对非对称的密钥。一把叫做私有密钥,另一把叫做公开密钥。顾名思义,私有密钥不能让其他任何人知道,而公开密钥则可以随意发布,任何人都可以获得。

使用公开密钥加密方式,发送密文的一方使用对方的公开密钥进行加密处理,对方收到被加密的信息后,再使用自己的私有密钥进行解密。利用这种方式,不需要发送用来解密的私有密钥,也不必担心密钥被攻击者窃听而盗走。

image

非对称加密的特点是信息传输一对多,服务器只需要维持一个私钥就能够和多个客户端进行加密通信。

s这种方式有以下缺点:

  • 公钥是公开的,所以针对私钥加密的信息,黑客截获后可以使用公钥进行解密,获取其中的内容;
  • 公钥并不包含服务器的信息,使用非对称加密算法无法确保服务器身份的合法性,存在中间人攻击的风险,服务器发送给客户端的公钥可能在传送过程中被中间人截获并篡改;
  • 使用非对称加密在数据加密解密过程需要消耗一定时间,降低了数据传输效率;

方法3.对称加密+非对称加密(HTTPS采用这种方式)

使用对称密钥的好处是解密的效率比较快,使用非对称密钥的好处是可以使得传输的内容不能被破解,因为就算你拦截到了数据,但是没有对应的私钥,也是不能破解内容的。就比如说你抢到了一个保险柜,但是没有保险柜的钥匙也不能打开保险柜。那我们就将对称加密与非对称加密结合起来,充分利用两者各自的优势,在交换密钥环节使用非对称加密方式,之后的建立通信交换报文阶段则使用对称加密方式。

具体做法是:发送密文的一方使用对方的公钥进行加密处理“对称的密钥”,然后对方用自己的私钥解密拿到“对称的密钥”,这样可以确保交换的密钥是安全的前提下,使用对称加密方式进行通信。所以,HTTPS采用对称加密和非对称加密两者并用的混合加密机制。

2、解决报文可能遭篡改问题——数字签名

网络传输过程中需要经过很多中间节点,虽然数据无法被解密,但可能被篡改,那如何校验数据的完整性呢?----校验数字签名。

数字签名有两种功效:

  • 能确定消息确实是由发送方签名并发出来的,因为别人假冒不了发送方的签名。
  • 数字签名能确定消息的完整性,证明数据是否未被篡改过。

数字签名如何生成:

image

将一段文本先用Hash函数生成消息摘要,然后用发送者的私钥加密生成数字签名,与原文文一起传送给接收者。接下来就是接收者校验数字签名的流程了。

校验数字签名流程:

image

接收者只有用发送者的公钥才能解密被加密的摘要信息,然后用HASH函数对收到的原文产生一个摘要信息,与上一步得到的摘要信息对比。如果相同,则说明收到的信息是完整的,在传输过程中没有被修改,否则说明信息被修改过,因此数字签名能够验证信息的完整性。

假设消息传递在Kobe,James两人之间发生。James将消息连同数字签名一起发送给Kobe,Kobe接收到消息后,通过校验数字签名,就可以验证接收到的消息就是James发送的。当然,这个过程的前提是Kobe知道James的公钥。问题的关键的是,和消息本身一样,公钥不能在不安全的网络中直接发送给Kobe,或者说拿到的公钥如何证明是James的。

此时就需要引入了证书颁发机构(Certificate Authority,简称CA),CA数量并不多,Kobe客户端内置了所有受信任CA的证书。CA对James的公钥(和其他信息)数字签名后生成证书。

3、解决通信方身份可能被伪装的问题——数字证书

数字证书认证机构处于客户端与服务器双方都可信赖的第三方机构的立场上。

image

我们来介绍一下数字证书认证机构的业务流程:

  • 服务器的运营人员向第三方机构CA提交公钥、组织信息、个人信息(域名)等信息并申请认证;
  • CA通过线上、线下等多种手段验证申请者提供信息的真实性,如组织是否存在、企业是否合法,是否拥有域名的所有权等;
  • 如信息审核通过,CA会向申请者签发认证文件-证书。证书包含以下信息:申请者公钥、申请者的组织信息和个人信息、签发机构 CA的信息、有效时间、证书序列号等信息的明文,同时包含一个签名。 其中签名的产生算法:首先,使用散列函数计算公开的明文信息的信息摘要,然后,采用 CA的私钥对信息摘要进行加密,密文即签名;
  • 客户端 Client 向服务器 Server 发出请求时,Server 返回证书文件;
  • 客户端 Client 读取证书中的相关的明文信息,采用相同的散列函数计算得到信息摘要,然后,利用对应 CA的公钥解密签名数据,对比证书的信息摘要,如果一致,则可以确认证书的合法性,即服务器的公开密钥是值得信赖的。
  • 客户端还会验证证书相关的域名信息、有效时间等信息; 客户端会内置信任CA的证书信息(包含公钥),如果CA不被信任,则找不到对应 CA的证书,证书也会被判定非法。

二、 HTTPS工作流程
image


1.Client发起一个HTTPS(比如https://juejin.im/user/5a9a9cdcf265da238b7d771c)的请求,根据RFC2818的规定,Client知道需要连接Server的443(默认)端口。

2.Server把事先配置好的公钥证书(public key certificate)返回给客户端。

3.Client验证公钥证书:比如是否在有效期内,证书的用途是不是匹配Client请求的站点,是不是在CRL吊销列表里面,它的上一级证书是否有效,这是一个递归的过程,直到验证到根证书(操作系统内置的Root证书或者Client内置的Root证书)。如果验证通过则继续,不通过则显示警告信息。

4.Client使用伪随机数生成器生成加密所使用的对称密钥,然后用证书的公钥加密这个对称密钥,发给Server。

5.Server使用自己的私钥(private key)解密这个消息,得到对称密钥。至此,Client和Server双方都持有了相同的对称密钥。

6.Server使用对称密钥加密“明文内容A”,发送给Client。

7.Client使用对称密钥解密响应的密文,得到“明文内容A”。

8.Client再次发起HTTPS的请求,使用对称密钥加密请求的“明文内容B”,然后Server使用对称密钥解密密文,得到“明文内容B”。


引用(本文章只供本人学习以及学习的记录,如有侵权,请联系我删除)

深入理解HTTPS工作原理

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,053评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,527评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,779评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,685评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,699评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,609评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,989评论 3 396
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,654评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,890评论 1 298
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,634评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,716评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,394评论 4 319
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,976评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,950评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,191评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,849评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,458评论 2 342

推荐阅读更多精彩内容