Ubuntu16.04配置安装caffe

电脑配置
系统:Ubuntu16.04
GPU:NVIDIA GTX1080

安装依赖

sudo apt-get update
sudo apt-get upgrade
sudo apt-get install -y build-essential cmake git pkg-config
sudo apt-get install -y libprotobuf-dev libleveldb-dev libsnappy-dev libhdf5-serial-dev protobuf-compiler
sudo apt-get install -y libatlas-base-dev libgflags-dev libgoogle-glog-dev liblmdb-dev
sudo apt-get install -y --no-install-recommends libboost-all-dev
# (Python general)
sudo apt-get install -y python-pip
# (Python 2.7 development files)
sudo apt-get install -y python-dev
sudo apt-get install -y python-numpy python-scipy

安装Caffe
(1) 从github上获取caffe (get git: sudo apt-get install git):

git clone https://github.com/BVLC/caffe.git

在caffe-master/python文件夹内,使用root执行依赖项的检查与安装:

sudo su
cd caffe-master/python
for req in $(cat requirements.txt); do pip install $req; done

以上过程报错,需要解决后再进行,可通过升级pip解决部分问题:

pip --version
pip install -u pip

(2) cp Makefile.config:

sudo cp Makefile.config.example Makefile.config

(3) 打开并修改配置文件:

sudo gedit Makefile.config #打开Makefile.config文件

3.1 使用CUDNN:

将
#USE_CUDNN := 1
修改成: 
USE_CUDNN := 1

3.2 使用OpenCV

USE_OPENCV := 1 (可选)
OPENCV_VERSION := 3 (如果打开了USE_OPENCV,而且opencv版本为3时)

3.3 Python来编写layer

将
#WITH_PYTHON_LAYER := 1 
修改为 
WITH_PYTHON_LAYER := 1

3.4 路径变化

INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include
LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib 
修改为: 
INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include /usr/include/hdf5/serial
LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib /usr/lib/x86_64-linux-gnu /usr/lib/x86_64-linux-gnu/hdf5/serial 

修改makefile文件
打开makefile文件,做如下修改:

将:
NVCCFLAGS +=-ccbin=$(CXX) -Xcompiler-fPIC $(COMMON_FLAGS)
替换为:
NVCCFLAGS += -D_FORCE_INLINES -ccbin=$(CXX) -Xcompiler -fPIC $(COMMON_FLAGS)

编译

make all -j8  -数字6为并行编译进程数目,一般设置为CPU物理核心数,可以使用 $(nproc) 来替换或echo $(nproc) 来查看CPU物理核心数
make test -j8
make runtest -j8
make pycaffe  -此时应该已经编译完成,再次执行以确认

忽视以下错误即可:

nvcc warning : The 'compute_20', 'sm_20', and 'sm_21' architectures are deprecated, and may be removed in a future release (Use -Wno-deprecated-gpu-targets to suppress warning).

测试
MNIST数据集测试
配置caffe完成后,我们可以利用MNIST数据集对caffe进行测试,过程如下:
1.将终端定位到Caffe根目录

cd ~/caffe

2.下载MNIST数据库并解压缩

./data/mnist/get_mnist.sh

3.将其转换成Lmdb数据库格式

./examples/mnist/create_mnist.sh

4.训练网络

./examples/mnist/train_lenet.sh

训练开始:

I0922 13:14:47.332710  1418 caffe.cpp:218] Using GPUs 0
I0922 13:14:47.390920  1418 caffe.cpp:223] GPU 0: TITAN X (Pascal)
I0922 13:14:47.593374  1418 solver.cpp:44] Initializing solver from parameters: 
test_iter: 100
test_interval: 500
base_lr: 0.01
display: 100
max_iter: 10000
lr_policy: "inv"
gamma: 0.0001
power: 0.75
momentum: 0.9
weight_decay: 0.0005
snapshot: 5000
snapshot_prefix: "examples/mnist/lenet"
solver_mode: GPU
device_id: 0
...
I0922 13:15:00.678990  1418 solver.cpp:447] Snapshotting to binary proto file examples/mnist/lenet_iter_10000.caffemodel
I0922 13:15:00.682633  1418 sgd_solver.cpp:273] Snapshotting solver state to binary proto file examples/mnist/lenet_iter_10000.solverstate
I0922 13:15:00.684578  1418 solver.cpp:310] Iteration 10000, loss = 0.00334544
I0922 13:15:00.684592  1418 solver.cpp:330] Iteration 10000, Testing net (#0)
I0922 13:15:00.732586  1429 data_layer.cpp:73] Restarting data prefetching from start.
I0922 13:15:00.733906  1418 solver.cpp:397]     Test net output #0: accuracy = 0.9908
I0922 13:15:00.733917  1418 solver.cpp:397]     Test net output #1: loss = 0.0276493 (* 1 = 0.0276493 loss)
I0922 13:15:00.733922  1418 solver.cpp:315] Optimization Done.
I0922 13:15:00.733924  1418 caffe.cpp:259] Optimization Done.

参考:
http://blog.csdn.net/aifei7320/article/details/73252635(此文记录了部分错误记录)
http://www.jianshu.com/p/7df78120803a

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,794评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,050评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,587评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,861评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,901评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,898评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,832评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,617评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,077评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,349评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,483评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,199评论 5 341
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,824评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,442评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,632评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,474评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,393评论 2 352

推荐阅读更多精彩内容