关联规则原理及实现(Association Rules)

项目地址:https://github.com/Daya-Jin/ML_for_learner/blob/master/rule/Apriori.ipynb
原博客:https://daya-jin.github.io/2018/12/30/AssociationRules/

概述

在商场的购物数据中,常常可以看到多种物品同时出现,这背后隐藏着联合销售或打包销售的商机。关联规则分析(Association Rule Analysis)就是为了发掘购物数据背后的商机而诞生的。

定义一个关联规则:

A\Rightarrow{B}

其中A​B​表示的是两个互斥事件,A​称为前因(antecedent),B​称为后果(consequent),上述关联规则表示A​会导致B​。具体地,在购物情形中,表示购买了A​的顾客也会购买B​,那么商场就可以把A​B​放在一起或者是打包销售。关联规则的强度可以用它的支持度(support)和置信度(confidence):

S(A\Rightarrow{B})=P(AB) \\ C(A\Rightarrow{B})=P(B|A)=\frac{P(AB)}{P(A)}

可以看出支持度即两个事件同时发生的概率,置信度即在前因发生的条件下,后果发生的概率。

在选取规则时通常会对这两个值设一个最低阈值最小支持度min_{sup}和最小置信度min_{conf}。注意由关联规则分析得出来的关联规则并不保证具有因果关系。

项集(itemset)被定义为包含0个或多个项的集合,支持度大于阈值min_{sup}的项集被称为频繁项集(frequent itemset),频繁项集中置信度大于阈值min_{conf}的规则称为强规则(strong rule)。关联规则的目的就是找到频繁项集与强规则。

由概率出发不难得到关于频繁项集的一个性质:频繁项集的所有子集都是频繁的,即P(A){\ge}P(AB){\ge}min_{sup};非频繁项集的超集都是非频繁的,即min_{sup}{\ge}P(A){\ge}P(AB)。这一性质能大大减少搜索频繁项集时的搜索空间。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 211,948评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,371评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,490评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,521评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,627评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,842评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,997评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,741评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,203评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,534评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,673评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,339评论 4 330
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,955评论 3 313
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,770评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,000评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,394评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,562评论 2 349

推荐阅读更多精彩内容