接下来跟着上一篇, 解析情景三和情景四
情景三
读写读
线程1的获得读锁的操作和情景一相同, 接下来从线程2开始分析
public void lock() {
sync.acquire(1);
}
public final void acquire(int arg) {
if (!tryAcquire(arg) &&
acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
selfInterrupt();
}
protected final boolean tryAcquire(int acquires) {
// thread-1
Thread current = Thread.currentThread();\
// c = 65536
int c = getState();
// w = 0
int w = exclusiveCount(c);
if (c != 0) {
// 进入此分支
if (w == 0 || current != getExclusiveOwnerThread())
return false;
......
}
......
}
之后返回acquire方法
public final void acquire(int arg) {
if (!tryAcquire(arg) &&
// 最后thread-1将自己加入队列并阻塞
acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
selfInterrupt();
}
此时线程2开始执行
// ReadLock
public void lock() {
sync.acquireShared(1);
}
public final void acquireShared(int arg) {
if (tryAcquireShared(arg) < 0)
doAcquireShared(arg);
}
protected final int tryAcquireShared(int unused) {
// thread-2
Thread current = Thread.currentThread();
// c = 65536
int c = getState();
// 由于线程1(写操作)被阻塞, 没有获取写锁
// 不走此分支
if (exclusiveCount(c) != 0 &&
getExclusiveOwnerThread() != current)
return -1;
// r = 1
int r = sharedCount(c);
if (!readerShouldBlock() &&
r < MAX_COUNT &&
compareAndSetState(c, c + SHARED_UNIT)) {
......
}
return 1;
}
......
}
static final class FairSync extends Sync {
final boolean readerShouldBlock() {
return hasQueuedPredecessors();
}
}
public final boolean hasQueuedPredecessors() {
Node t = tail;
Node h = head;
Node s;
// 由于thread-1被阻塞, 所以head和tail不相等
return h != t &&
// 队列中的末尾是thread-1, 非当前线程thread-2
// 返回true
((s = h.next) == null || s.thread != Thread.currentThread());
}
说明在队列中还有排队的线程, 返回tryAcquireShared
protected final int tryAcquireShared(int unused) {
Thread current = Thread.currentThread();
int c = getState();
if (exclusiveCount(c) != 0 &&
getExclusiveOwnerThread() != current)
return -1;
int r = sharedCount(c);
// 此读线程应该被阻塞
if (!readerShouldBlock() &&
r < MAX_COUNT &&
compareAndSetState(c, c + SHARED_UNIT)) {
......
}
// 走此分支
return fullTryAcquireShared(current);
}
final int fullTryAcquireShared(Thread current) {
HoldCounter rh = null;
for (;;) {
// c = 65536
int c = getState();
// 此时希望获取写锁的线程二被阻塞, 不走此分支
if (exclusiveCount(c) != 0) {
if (getExclusiveOwnerThread() != current)
return -1;
}
// 由于此时队列中有线程1, 所以可以进入此分支
else if (readerShouldBlock()) {
// firstReader是线程1, 当前线程为线程3
// 不走此分支
if (firstReader == current) {
// assert firstReaderHoldCount > 0;
}
else {
if (rh == null) {
// 由于只有线程1获得读锁
// 所以cachedHoldCounter为null
rh = cachedHoldCounter;
// 进入此分支
if (rh == null || rh.tid != getThreadId(current)) {
// 创建HoldCounter对象(对应当前线程)
rh = readHolds.get();
// 此时当前线程没有重新获得读锁
if (rh.count == 0)
// 删除当前线程对应的
readHolds.remove();
}
}
// 返回-1
if (rh.count == 0)
return -1;
}
}
......
}
}
回到acquireShared方法
public final void acquireShared(int arg) {
// tryAcquireShared最终返回-1
// 进入该分支
if (tryAcquireShared(arg) < 0)
doAcquireShared(arg);
}
private void doAcquireShared(int arg) {
// 将代表当前线程的node加入队列中
final Node node = addWaiter(Node.SHARED);
boolean failed = true;
try {
boolean interrupted = false;
for (;;) {
// p代表线程1
final Node p = node.predecessor();
// p与head是不相等的, 不走此分支
if (p == head) {
......
}
// 第一次循环不会阻塞
// 第二次循环会到parkAndCheckInterrupt被阻塞
if (shouldParkAfterFailedAcquire(p, node) &&
parkAndCheckInterrupt())
interrupted = true;
}
} finally {
if (failed)
cancelAcquire(node);
}
}
情景四
读写写
和情景三类似, 只不过是线程三是写操作
// WriteLock
public void lock() {
sync.acquire(1);
}
public final void acquire(int arg) {
if (!tryAcquire(arg) &&
acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
selfInterrupt();
}
protected final boolean tryAcquire(int acquires) {
// current为thread-2
Thread current = Thread.currentThread();
// c = 65536
int c = getState();
// w = 0
int w = exclusiveCount(c);
if (c != 0) {
// 进入此分支
if (w == 0 || current != getExclusiveOwnerThread())
return false;
......
}
......
}
回到acquire方法中
public final void acquire(int arg) {
// 由于tryAcquire返回false
if (!tryAcquire(arg) &&
// 进入此分支
// 创建代表当前线程的节点
// 并加入队列后被阻塞
acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
selfInterrupt();
}