集成学习Bagging和Boosting算法总结

技术交流QQ群:1027579432,欢迎你的加入!

一、集成学习综述

    1. 集成方法或元算法是对其他算法进行组合的一种方式,下面的博客中主要关注的是AdaBoost元算法。将不同的分类器组合起来,而这种组合结果被称为集成方法/元算法。使用集成算法时会有很多的形式,如:
    • 不同算法的集成
    • 同一种算法在不同设置下的集成
    • 数据集不同部分分配给不同分类器之后的集成
    1. AdaBoost算法优缺点
    • 优点:泛化错误率低,易编码,可以应用在大部分分类器上,无参数调整
    • 缺点:对离群点敏感
    • 适用数据类型:数值型和标称型数据

二、基于数据集多重采样的分类器

    1. bagging方法(bootstrap aggregating)
    • 主要思想:
      • (1). 从原始数据集中抽取新的训练集。每次从原始数据集中使用有放回采样数据的方法,抽取n个样本(在原始数据集中,有些样本可能被重复采样,而有些样本可能一次都未被采样到)。共进行k次抽取,得到k个新的数据集(k个新训练集之间是相互独立的),新的数据集的大小和原始数据集的大小相等。
      • (2). 每次使用一个新的训练集得到一个模型,k个新的训练集总共可以得到k个新的模型
      • (3). 对分类问题:将(2)中得到的k个模型采用投票方式得到分类结果;对回归问题:计算(2)中模型的均值作为最后的结果(所有模型的重要性相同!!!)
    1. boosting方法
    • 不论是在bagging还是boosting当中,所使用的多个分类器的类型都是一样的。但是,在boosting中,不同的分类器通过串行训练来获得的,每个新分类器都根据已训练出的分类器的性能来进行训练。boosting是通过关注被已有分类器错分的那些数据来获得新的分类器,,boosting方法有多个版本,下面介绍的是最流行的一个版本AdaBoosting算法。
    • 主要思想:
      • (1). 对每一次的训练数据样本赋予一个权重,并且每一次样本的权重分布依赖上一次的分类结果。
      • (2). 基分类器之间采用序列的线性加权方式来组合。

三、bagging方法与boosting方法对比

    1. 样本选择上:
    • bagging方法:新的训练集是在原始训练集中采用有放回的方式采样样本的,从原始训练集中选取的每个新的训练集之间是相互独立的。
    • boosting方法:每一次的训练集不变,只是训练集中的每个样本在分类器中的权重发生变化,而权重是根据上一次的分类结果进行调整的。
    1. 样本权重上:
    • bagging方法:使用均匀选取样本,每个样本的权重相同。
    • boosting方法:根据错误率不断调整样本的权重,错误率越大,权重越大。
    1. 预测函数:
    • bagging方法:所有预测函数的权重相等
    • boosting方法:每个弱分类器都有相应的权重,对分类误差小的分类器会有更大的权重
    1. 并行计算:
    • bagging方法:各个预测函数可以并行计算
    • boosting方法:各个预测函数只能顺序生成,因为后一个模型需要前一个模型的输出结果

四、集成学习的常见应用

    1. 常见算法
    • Bagging + 决策树 = 随机森林
    • AdaBoost + 决策树 = 提升树
    • Gradient Boosting + 决策树 = GBDT
    1. 基于错误率提升分类器的性能(AdaBoost算法原理介绍)
    • 2.1 AdaBoost算法介绍
      集成学习算法思想:使用弱分类器和多个样本来构建一个强分类器。AdaBoost是adaptive boosting的缩写,主要运行过程是:首先,对训练数据集中的每个样本进行训练,并赋予每个样本一个权重,这些权重构成一个向量D。一开始,这些样本的初始权重都是相同的!然后,在训练数据上训练出一个弱分类器并计算弱分类器的错误率。接着,在相同的训练数据上再次训练弱分类器。在分类器的第二次训练过程中,将会重新调整每个样本的权重!其中对第一次中分对的样本降低其权重,在第一次中分错的样本提高其权重。为了从所有弱分类器中得到最终的分类结果,AdaBoost还会对每个弱分类器都分配一个权重值alpha,这些alpha值是基于每个弱分类器的错误率进行计算出来的。
    • 2.2 错误率ε的定义如下:


      错误率计算公式.png
    • 2.3 alpha的计算公式


      alpha的计算公式.png
    • 2.4 AdaBoost算法流程如下


      AdaBoost算法流程.png
    • 2.5 对上图的解释如下:
      • 首先,对训练数据集中的每个样本进行初始化权重,此时每个样本的权重是相同的,这些权重构成了权重向量D;然后,经过第一个弱分类器后,训练集中每个样本的权重发生变化,根据第一个弱分类器的分类结果计算其错误率ε;接着,计算出alpha的值;计算出aplha值之后,可以对权重向量D进行更新,使得对第一个分类器分类结果中分类错误的样本,提高其权重。对分类正确的样本,降低其权重。权重向量D的更新方法如下:
        • 2.5.1 如果某个样本被第一个弱分类器分类正确,那么该样本的权重更新公式是:


          分类正确情况.png
        • 2.5.2 如果某个样本被第一个弱分类器分类错误,那么该样本的权重更新公式是:


          分类错误情况.png
      • 在计算出D后,AdaBoost又开始进行下一轮的迭代,AdaBoost算法会不断的重复训练和调整权重,直到训练错误率为0或弱分类器的数目达到用户的指定值为止。
    1. AdaBoost算法实战(基于单层决策树构建弱分类器)


      数据集可视化.png
  • 3.1从上图可以看出,试着从某个坐标轴上选择一个值(即选择一条与坐标轴平行的直线)来将所有的蓝色圆点和橘色圆点分开,这显然是不可能的。这就是单层决策树难以处理的一个著名问题。通过使用多颗单层决策树,我们可以构建出一个能够对该数据集完全正确分类的分类器。
  #################数据集的可视化#####################

def loadSimData():
  """
  创建单层决策树的数据集
  """
  dataMat = np.matrix([[1., 2.1],
                       [1.5, 1.6],
                       [1.3, 1.],
                       [1., 1.],
                       [2., 1.]])
  classLabels = [1.0, 1.0, -1.0, -1.0, 1.0]
  return dataMat, classLabels


def showDataSet(dataMat, labelMat):
  """
  数据可视化
  """
  data_plus = []  # 正样本
  data_minus = []  # 负样本
  for i in range(len(dataMat)):
      if labelMat[i] > 0:
          data_plus.append(dataMat[i])
      else:
          data_minus.append(dataMat[i])
  data_plus_np = np.array(data_plus)
  data_minus_np = np.array(data_minus)  # 转化成numpy中的数据类型
  plt.scatter(np.transpose(data_plus_np)[0], np.transpose(data_plus_np)[1])
  plt.scatter(np.transpose(data_minus_np)[0], np.transpose(data_minus_np)[1])
  plt.title("Dataset Visualize")
  plt.xlabel("x1")
  plt.ylabel("x2")
  plt.show()
if __name__ == '__main__':
  data_Arr, classLabels = loadSimData()
  showDataSet(data_Arr, classLabels)
数据集可视化2.png
  • 3.2蓝色横线上的是一个类别,蓝色横线下边是一个类别。显然,此时有一个蓝点分类错误,计算此时的分类误差错误率为1/5 = 0.2。这个横线与坐标轴的y轴的交点,就是我们设置的阈值,通过不断改变阈值的大小,找到使单层决策树的分类误差最小的阈值。同理,竖线也是如此,找到最佳分类的阈值,就找到了最佳单层决策树。
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Date    : 2019-05-12 21:31:41
# @Author  : cdl (1217096231@qq.com)
# @Link    : https://github.com/cdlwhm1217096231/python3_spider
# @Version : $Id$

import numpy as np
import matplotlib.pyplot as plt

# 数据集可视化


def loadSimpleData():
    dataMat = np.matrix([[1., 2.1],
                         [1.5, 1.6],
                         [1.3, 1.],
                         [1., 1.],
                         [2., 1.]])
    classLabels = [1.0, 1.0, -1.0, -1.0, 1.0]
    return dataMat, classLabels


def showDataSet(dataMat, labelMat):
    data_plus = []
    data_minus = []
    for i in range(len(dataMat)):
        if labelMat[i] > 0:
            data_plus.append(dataMat[i])
        else:
            data_minus.append(dataMat[i])
    data_plus_np = np.array(data_plus)
    data_minus_np = np.array(data_minus)
    plt.scatter(np.transpose(data_plus_np)[0], np.transpose(data_plus)[1])
    plt.scatter(np.transpose(data_minus_np)[0], np.transpose(data_minus)[1])
    plt.title("dataset visualize")
    plt.xlabel("x")
    plt.ylabel("y")
    plt.show()


# 构建单层决策树分类函数
def stumpClassify(dataMat, dimen, threshval, threshIneq):
    """
        dataMat:数据矩阵
        dimen:第dimen列,即第几个特征
        threshval:阈值
        threshIneq:标志
        返回值retArray:分类结果
    """
    retArray = np.ones((np.shape(dataMat)[0], 1))  # 初始化retArray为1
    if threshIneq == "lt":
        retArray[dataMat[:, dimen] <= threshval] = -1.0   # 如果小于阈值,则赋值为-1
    else:
        retArray[dataMat[:, dimen] > threshval] = 1.0   # 如果大于阈值,则赋值为-1
    return retArray
# 找到数据集上最佳的单层决策树,单层决策树是指只考虑其中的一个特征,在该特征的基础上进行分类,寻找分类错误率最低的阈值即可。例如本文中的例子是,如果以第一列特征为基础,阈值选择1.3,并且设置>1.3的为-1,<1.3的为+1,这样就构造出了一个二分类器


def buildStump(dataMat, classLabels, D):
    """
        dataMat:数据矩阵
        classLabels:数据标签
        D:样本权重
        返回值是:bestStump:最佳单层决策树信息;minError:最小误差;bestClasEst:最佳的分类结果
    """
    dataMat = np.matrix(dataMat)
    labelMat = np.matrix(classLabels).T
    m, n = np.shape(dataMat)
    numSteps = 10.0
    bestStump = {}  # 存储最佳单层决策树信息的字典
    bestClasEst = np.mat(np.zeros((m, 1)))   # 最佳分类结果
    minError = float("inf")
    for i in range(n):  # 遍历所有特征
        rangeMin = dataMat[:, i].min()
        rangeMax = dataMat[:, i].max()
        stepSize = (rangeMax - rangeMin) / numSteps  # 计算步长
        for j in range(-1, int(numSteps) + 1):
            for inequal in ["lt", "gt"]:
                threshval = (rangeMin + float(j) * stepSize)  # 计算阈值
                predictVals = stumpClassify(
                    dataMat, i, threshval, inequal)  # 计算分类结果
                errArr = np.mat(np.ones((m, 1)))  # 初始化误差矩阵
                errArr[predictVals == labelMat] = 0  # 分类完全正确,赋值为0
                # 基于权重向量D而不是其他错误计算指标来评价分类器的,不同的分类器计算方法不一样
                weightedError = D.T * errArr  # 计算弱分类器的分类错误率---这里没有采用常规方法来评价这个分类器的分类准确率,而是乘上了样本权重D
                print("split: dim %d, thresh %.2f, thresh ineqal: %s, the weighted error is %.3f" % (
                    i, threshval, inequal, weightedError))
                if weightedError < minError:
                    minError = weightedError
                    bestClasEst = predictVals.copy()
                    bestStump["dim"] = i
                    bestStump["thresh"] = threshval
                    bestStump["ineq"] = inequal
    return bestStump, minError, bestClasEst
  • 3.3 通过遍历,改变不同的阈值,计算最终的分类误差,找到分类误差最小的分类方式,即为我们要找的最佳单层决策树。这里lt表示less than,表示分类方式,对于小于阈值的样本点赋值为-1,gt表示greater than,也是表示分类方式,对于大于阈值的样本点赋值为-1。经过遍历,我们找到,训练好的最佳单层决策树的最小分类误差为0,就是对于该数据集,无论用什么样的单层决策树,分类误差最小就是0。这就是我们训练好的弱分类器。接下来,使用AdaBoost算法提升分类器性能,将分类误差缩短到0,看下AdaBoost算法是如何实现的。
# 使用Adaboost算法提升弱分类器性能
def adbBoostTrainDS(dataMat, classLabels, numIt=40):
    """
        dataMat:数据矩阵
        classLabels:标签矩阵
        numIt:最大迭代次数
        返回值:weakClassArr  训练好的分类器   aggClassEst:类别估计累计值
    """
    weakClassArr = []
    m = np.shape(dataMat)[0]
    D = np.mat(np.ones((m, 1)) / m)  # 初始化样本权重D
    aggClassEst = np.mat(np.zeros((m, 1)))
    for i in range(numIt):
        bestStump, error, classEst = buildStump(
            dataMat, classLabels, D)  # 构建单个单层决策树
        # 计算弱分类器权重alpha,使error不等于0,因为分母不能为0
        alpha = float(0.5 * np.log((1.0 - error) / max(error, 1e-16)))
        bestStump["alpha"] = alpha   # 存储每个弱分类器的权重alpha
        weakClassArr.append(bestStump)  # 存储单个单层决策树
        print("classEst: ", classEst.T)
        expon = np.multiply(-1 * alpha *
                            np.mat(classLabels).T, classEst)  # 计算e的指数项
        D = np.multiply(D, np.exp(expon))
        D = D / D.sum()

        # 计算AdaBoost误差,当误差为0时,退出循环
        aggClassEst += alpha * classEst  # 计算类别估计累计值--注意这里包括了目前已经训练好的每一个弱分类器
        print("aggClassEst: ", aggClassEst.T)
        aggErrors = np.multiply(np.sign(aggClassEst) != np.mat(
            classLabels).T, np.ones((m, 1)))  # 目前集成分类器的分类误差
        errorRate = aggErrors.sum() / m  # 集成分类器分类错误率,如果错误率为0,则整个集成算法停止,训练完成
        print("total error: ", errorRate)
        if errorRate == 0.0:
            break
    return weakClassArr, aggClassEst
  • 3.4 使用AdaBoost提升分类器性能
# Adaboost分类函数
def adaClassify(dataToClass, classifier):
    """
        dataToClass:待分类样本
        classifier:训练好的强分类器
    """
    dataMat = np.mat(dataToClass)
    m = np.shape(dataMat)[0]
    aggClassEst = np.mat(np.zeros((m, 1)))
    for i in range(len(classifier)):   # 遍历所有分类器,进行分类
        classEst = stumpClassify(
            dataMat, classifier[i]["dim"], classifier[i]["thresh"], classifier[i]["ineq"])
        aggClassEst += classifier[i]["alpha"] * classEst
        print(aggClassEst)
    return np.sign(aggClassEst)
  • 3.5 整个Adaboost提升算法的代码如下:
  #!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Date    : 2019-05-12 21:31:41
# @Author  : cdl (1217096231@qq.com)
# @Link    : https://github.com/cdlwhm1217096231/python3_spider
# @Version : $Id$

import numpy as np
import matplotlib.pyplot as plt

# 数据集可视化


def loadSimpleData():
    dataMat = np.matrix([[1., 2.1],
                         [1.5, 1.6],
                         [1.3, 1.],
                         [1., 1.],
                         [2., 1.]])
    classLabels = [1.0, 1.0, -1.0, -1.0, 1.0]
    return dataMat, classLabels


def showDataSet(dataMat, labelMat):
    data_plus = []
    data_minus = []
    for i in range(len(dataMat)):
        if labelMat[i] > 0:
            data_plus.append(dataMat[i])
        else:
            data_minus.append(dataMat[i])
    data_plus_np = np.array(data_plus)
    data_minus_np = np.array(data_minus)
    plt.scatter(np.transpose(data_plus_np)[0], np.transpose(data_plus)[1])
    plt.scatter(np.transpose(data_minus_np)[0], np.transpose(data_minus)[1])
    plt.title("dataset visualize")
    plt.xlabel("x")
    plt.ylabel("y")
    plt.show()


# 构建单层决策树分类函数
def stumpClassify(dataMat, dimen, threshval, threshIneq):
    """
        dataMat:数据矩阵
        dimen:第dimen列,即第几个特征
        threshval:阈值
        threshIneq:标志
        返回值retArray:分类结果
    """
    retArray = np.ones((np.shape(dataMat)[0], 1))  # 初始化retArray为1
    if threshIneq == "lt":
        retArray[dataMat[:, dimen] <= threshval] = -1.0   # 如果小于阈值,则赋值为-1
    else:
        retArray[dataMat[:, dimen] > threshval] = 1.0   # 如果大于阈值,则赋值为-1
    return retArray


# 找到数据集上最佳的单层决策树,单层决策树是指只考虑其中的一个特征,在该特征的基础上进行分类,寻找分类错误率最低的阈值即可。例如本文中的例子是,如果以第一列特征为基础,阈值选择1.3,并且设置>1.3的为-1,<1.3的为+1,这样就构造出了一个二分类器
def buildStump(dataMat, classLabels, D):
    """
        dataMat:数据矩阵
        classLabels:数据标签
        D:样本权重
        返回值是:bestStump:最佳单层决策树信息;minError:最小误差;bestClasEst:最佳的分类结果
    """
    dataMat = np.matrix(dataMat)
    labelMat = np.matrix(classLabels).T
    m, n = np.shape(dataMat)
    numSteps = 10.0
    bestStump = {}  # 存储最佳单层决策树信息的字典
    bestClasEst = np.mat(np.zeros((m, 1)))   # 最佳分类结果
    minError = float("inf")
    for i in range(n):  # 遍历所有特征
        rangeMin = dataMat[:, i].min()
        rangeMax = dataMat[:, i].max()
        stepSize = (rangeMax - rangeMin) / numSteps  # 计算步长
        for j in range(-1, int(numSteps) + 1):
            for inequal in ["lt", "gt"]:
                threshval = (rangeMin + float(j) * stepSize)  # 计算阈值
                predictVals = stumpClassify(
                    dataMat, i, threshval, inequal)  # 计算分类结果
                errArr = np.mat(np.ones((m, 1)))  # 初始化误差矩阵
                errArr[predictVals == labelMat] = 0  # 分类完全正确,赋值为0
                # 基于权重向量D而不是其他错误计算指标来评价分类器的,不同的分类器计算方法不一样
                weightedError = D.T * errArr  # 计算弱分类器的分类错误率---这里没有采用常规方法来评价这个分类器的分类准确率,而是乘上了样本权重D
                print("split: dim %d, thresh %.2f, thresh ineqal: %s, the weighted error is %.3f" % (
                    i, threshval, inequal, weightedError))
                if weightedError < minError:
                    minError = weightedError
                    bestClasEst = predictVals.copy()
                    bestStump["dim"] = i
                    bestStump["thresh"] = threshval
                    bestStump["ineq"] = inequal
    return bestStump, minError, bestClasEst


# 使用Adaboost算法提升弱分类器性能
def adbBoostTrainDS(dataMat, classLabels, numIt=40):
    """
        dataMat:数据矩阵
        classLabels:标签矩阵
        numIt:最大迭代次数
        返回值:weakClassArr  训练好的分类器   aggClassEst:类别估计累计值
    """
    weakClassArr = []
    m = np.shape(dataMat)[0]
    D = np.mat(np.ones((m, 1)) / m)  # 初始化样本权重D
    aggClassEst = np.mat(np.zeros((m, 1)))
    for i in range(numIt):
        bestStump, error, classEst = buildStump(
            dataMat, classLabels, D)  # 构建单个单层决策树
        # 计算弱分类器权重alpha,使error不等于0,因为分母不能为0
        alpha = float(0.5 * np.log((1.0 - error) / max(error, 1e-16)))
        bestStump["alpha"] = alpha   # 存储每个弱分类器的权重alpha
        weakClassArr.append(bestStump)  # 存储单个单层决策树
        print("classEst: ", classEst.T)
        expon = np.multiply(-1 * alpha *
                            np.mat(classLabels).T, classEst)  # 计算e的指数项
        D = np.multiply(D, np.exp(expon))
        D = D / D.sum()

        # 计算AdaBoost误差,当误差为0时,退出循环
        aggClassEst += alpha * classEst  # 计算类别估计累计值--注意这里包括了目前已经训练好的每一个弱分类器
        print("aggClassEst: ", aggClassEst.T)
        aggErrors = np.multiply(np.sign(aggClassEst) != np.mat(
            classLabels).T, np.ones((m, 1)))  # 目前集成分类器的分类误差
        errorRate = aggErrors.sum() / m  # 集成分类器分类错误率,如果错误率为0,则整个集成算法停止,训练完成
        print("total error: ", errorRate)
        if errorRate == 0.0:
            break
    return weakClassArr, aggClassEst


# Adaboost分类函数
def adaClassify(dataToClass, classifier):
    """
        dataToClass:待分类样本
        classifier:训练好的强分类器
    """
    dataMat = np.mat(dataToClass)
    m = np.shape(dataMat)[0]
    aggClassEst = np.mat(np.zeros((m, 1)))
    for i in range(len(classifier)):   # 遍历所有分类器,进行分类
        classEst = stumpClassify(
            dataMat, classifier[i]["dim"], classifier[i]["thresh"], classifier[i]["ineq"])
        aggClassEst += classifier[i]["alpha"] * classEst
        print(aggClassEst)
    return np.sign(aggClassEst)


if __name__ == "__main__":
    dataMat, classLabels = loadSimpleData()
    showDataSet(dataMat, classLabels)
    weakClassArr, aggClassEst = adbBoostTrainDS(dataMat, classLabels)
    print(adaClassify([[0, 0], [5, 5]], weakClassArr))

  • 结果如下:
      split: dim 0, thresh 0.90, thresh ineqal: lt, the weighted error is 0.400
      split: dim 0, thresh 0.90, thresh ineqal: gt, the weighted error is 0.400
      split: dim 0, thresh 1.00, thresh ineqal: lt, the weighted error is 0.400
      split: dim 0, thresh 1.00, thresh ineqal: gt, the weighted error is 0.400
      split: dim 0, thresh 1.10, thresh ineqal: lt, the weighted error is 0.400
      split: dim 0, thresh 1.10, thresh ineqal: gt, the weighted error is 0.400
      split: dim 0, thresh 1.20, thresh ineqal: lt, the weighted error is 0.400
      split: dim 0, thresh 1.20, thresh ineqal: gt, the weighted error is 0.400
      split: dim 0, thresh 1.30, thresh ineqal: lt, the weighted error is 0.200
      split: dim 0, thresh 1.30, thresh ineqal: gt, the weighted error is 0.400
      split: dim 0, thresh 1.40, thresh ineqal: lt, the weighted error is 0.200
      split: dim 0, thresh 1.40, thresh ineqal: gt, the weighted error is 0.400
      split: dim 0, thresh 1.50, thresh ineqal: lt, the weighted error is 0.400
      split: dim 0, thresh 1.50, thresh ineqal: gt, the weighted error is 0.400
      split: dim 0, thresh 1.60, thresh ineqal: lt, the weighted error is 0.400
      split: dim 0, thresh 1.60, thresh ineqal: gt, the weighted error is 0.400
      split: dim 0, thresh 1.70, thresh ineqal: lt, the weighted error is 0.400
      split: dim 0, thresh 1.70, thresh ineqal: gt, the weighted error is 0.400
      split: dim 0, thresh 1.80, thresh ineqal: lt, the weighted error is 0.400
      split: dim 0, thresh 1.80, thresh ineqal: gt, the weighted error is 0.400
      split: dim 0, thresh 1.90, thresh ineqal: lt, the weighted error is 0.400
      split: dim 0, thresh 1.90, thresh ineqal: gt, the weighted error is 0.400
      split: dim 0, thresh 2.00, thresh ineqal: lt, the weighted error is 0.600
      split: dim 0, thresh 2.00, thresh ineqal: gt, the weighted error is 0.400
      split: dim 1, thresh 0.89, thresh ineqal: lt, the weighted error is 0.400
      split: dim 1, thresh 0.89, thresh ineqal: gt, the weighted error is 0.400
      split: dim 1, thresh 1.00, thresh ineqal: lt, the weighted error is 0.200
      split: dim 1, thresh 1.00, thresh ineqal: gt, the weighted error is 0.400
      split: dim 1, thresh 1.11, thresh ineqal: lt, the weighted error is 0.200
      split: dim 1, thresh 1.11, thresh ineqal: gt, the weighted error is 0.400
      split: dim 1, thresh 1.22, thresh ineqal: lt, the weighted error is 0.200
      split: dim 1, thresh 1.22, thresh ineqal: gt, the weighted error is 0.400
      split: dim 1, thresh 1.33, thresh ineqal: lt, the weighted error is 0.200
      split: dim 1, thresh 1.33, thresh ineqal: gt, the weighted error is 0.400
      split: dim 1, thresh 1.44, thresh ineqal: lt, the weighted error is 0.200
      split: dim 1, thresh 1.44, thresh ineqal: gt, the weighted error is 0.400
      split: dim 1, thresh 1.55, thresh ineqal: lt, the weighted error is 0.200
      split: dim 1, thresh 1.55, thresh ineqal: gt, the weighted error is 0.400
      split: dim 1, thresh 1.66, thresh ineqal: lt, the weighted error is 0.400
      split: dim 1, thresh 1.66, thresh ineqal: gt, the weighted error is 0.400
      split: dim 1, thresh 1.77, thresh ineqal: lt, the weighted error is 0.400
      split: dim 1, thresh 1.77, thresh ineqal: gt, the weighted error is 0.400
      split: dim 1, thresh 1.88, thresh ineqal: lt, the weighted error is 0.400
      split: dim 1, thresh 1.88, thresh ineqal: gt, the weighted error is 0.400
      split: dim 1, thresh 1.99, thresh ineqal: lt, the weighted error is 0.400
      split: dim 1, thresh 1.99, thresh ineqal: gt, the weighted error is 0.400
      split: dim 1, thresh 2.10, thresh ineqal: lt, the weighted error is 0.600
      split: dim 1, thresh 2.10, thresh ineqal: gt, the weighted error is 0.400
      classEst:  [[-1.  1. -1. -1.  1.]]
      aggClassEst:  [[-0.69314718  0.69314718 -0.69314718 -0.69314718  0.69314718]]
      total error:  0.2
      split: dim 0, thresh 0.90, thresh ineqal: lt, the weighted error is 0.250
      split: dim 0, thresh 0.90, thresh ineqal: gt, the weighted error is 0.250
      split: dim 0, thresh 1.00, thresh ineqal: lt, the weighted error is 0.625
      split: dim 0, thresh 1.00, thresh ineqal: gt, the weighted error is 0.250
      split: dim 0, thresh 1.10, thresh ineqal: lt, the weighted error is 0.625
      split: dim 0, thresh 1.10, thresh ineqal: gt, the weighted error is 0.250
      split: dim 0, thresh 1.20, thresh ineqal: lt, the weighted error is 0.625
      split: dim 0, thresh 1.20, thresh ineqal: gt, the weighted error is 0.250
      split: dim 0, thresh 1.30, thresh ineqal: lt, the weighted error is 0.500
      split: dim 0, thresh 1.30, thresh ineqal: gt, the weighted error is 0.250
      split: dim 0, thresh 1.40, thresh ineqal: lt, the weighted error is 0.500
      split: dim 0, thresh 1.40, thresh ineqal: gt, the weighted error is 0.250
      split: dim 0, thresh 1.50, thresh ineqal: lt, the weighted error is 0.625
      split: dim 0, thresh 1.50, thresh ineqal: gt, the weighted error is 0.250
      split: dim 0, thresh 1.60, thresh ineqal: lt, the weighted error is 0.625
      split: dim 0, thresh 1.60, thresh ineqal: gt, the weighted error is 0.250
      split: dim 0, thresh 1.70, thresh ineqal: lt, the weighted error is 0.625
      split: dim 0, thresh 1.70, thresh ineqal: gt, the weighted error is 0.250
      split: dim 0, thresh 1.80, thresh ineqal: lt, the weighted error is 0.625
      split: dim 0, thresh 1.80, thresh ineqal: gt, the weighted error is 0.250
      split: dim 0, thresh 1.90, thresh ineqal: lt, the weighted error is 0.625
      split: dim 0, thresh 1.90, thresh ineqal: gt, the weighted error is 0.250
      split: dim 0, thresh 2.00, thresh ineqal: lt, the weighted error is 0.750
      split: dim 0, thresh 2.00, thresh ineqal: gt, the weighted error is 0.250
      split: dim 1, thresh 0.89, thresh ineqal: lt, the weighted error is 0.250
      split: dim 1, thresh 0.89, thresh ineqal: gt, the weighted error is 0.250
      split: dim 1, thresh 1.00, thresh ineqal: lt, the weighted error is 0.125
      split: dim 1, thresh 1.00, thresh ineqal: gt, the weighted error is 0.250
      split: dim 1, thresh 1.11, thresh ineqal: lt, the weighted error is 0.125
      split: dim 1, thresh 1.11, thresh ineqal: gt, the weighted error is 0.250
      split: dim 1, thresh 1.22, thresh ineqal: lt, the weighted error is 0.125
      split: dim 1, thresh 1.22, thresh ineqal: gt, the weighted error is 0.250
      split: dim 1, thresh 1.33, thresh ineqal: lt, the weighted error is 0.125
      split: dim 1, thresh 1.33, thresh ineqal: gt, the weighted error is 0.250
      split: dim 1, thresh 1.44, thresh ineqal: lt, the weighted error is 0.125
      split: dim 1, thresh 1.44, thresh ineqal: gt, the weighted error is 0.250
      split: dim 1, thresh 1.55, thresh ineqal: lt, the weighted error is 0.125
      split: dim 1, thresh 1.55, thresh ineqal: gt, the weighted error is 0.250
      split: dim 1, thresh 1.66, thresh ineqal: lt, the weighted error is 0.250
      split: dim 1, thresh 1.66, thresh ineqal: gt, the weighted error is 0.250
      split: dim 1, thresh 1.77, thresh ineqal: lt, the weighted error is 0.250
      split: dim 1, thresh 1.77, thresh ineqal: gt, the weighted error is 0.250
      split: dim 1, thresh 1.88, thresh ineqal: lt, the weighted error is 0.250
      split: dim 1, thresh 1.88, thresh ineqal: gt, the weighted error is 0.250
      split: dim 1, thresh 1.99, thresh ineqal: lt, the weighted error is 0.250
      split: dim 1, thresh 1.99, thresh ineqal: gt, the weighted error is 0.250
      split: dim 1, thresh 2.10, thresh ineqal: lt, the weighted error is 0.750
      split: dim 1, thresh 2.10, thresh ineqal: gt, the weighted error is 0.250
      classEst:  [[ 1.  1. -1. -1. -1.]]
      aggClassEst:  [[ 0.27980789  1.66610226 -1.66610226 -1.66610226 -0.27980789]]
      total error:  0.2
      split: dim 0, thresh 0.90, thresh ineqal: lt, the weighted error is 0.143
      split: dim 0, thresh 0.90, thresh ineqal: gt, the weighted error is 0.143
      split: dim 0, thresh 1.00, thresh ineqal: lt, the weighted error is 0.357
      split: dim 0, thresh 1.00, thresh ineqal: gt, the weighted error is 0.143
      split: dim 0, thresh 1.10, thresh ineqal: lt, the weighted error is 0.357
      split: dim 0, thresh 1.10, thresh ineqal: gt, the weighted error is 0.143
      split: dim 0, thresh 1.20, thresh ineqal: lt, the weighted error is 0.357
      split: dim 0, thresh 1.20, thresh ineqal: gt, the weighted error is 0.143
      split: dim 0, thresh 1.30, thresh ineqal: lt, the weighted error is 0.286
      split: dim 0, thresh 1.30, thresh ineqal: gt, the weighted error is 0.143
      split: dim 0, thresh 1.40, thresh ineqal: lt, the weighted error is 0.286
      split: dim 0, thresh 1.40, thresh ineqal: gt, the weighted error is 0.143
      split: dim 0, thresh 1.50, thresh ineqal: lt, the weighted error is 0.357
      split: dim 0, thresh 1.50, thresh ineqal: gt, the weighted error is 0.143
      split: dim 0, thresh 1.60, thresh ineqal: lt, the weighted error is 0.357
      split: dim 0, thresh 1.60, thresh ineqal: gt, the weighted error is 0.143
      split: dim 0, thresh 1.70, thresh ineqal: lt, the weighted error is 0.357
      split: dim 0, thresh 1.70, thresh ineqal: gt, the weighted error is 0.143
      split: dim 0, thresh 1.80, thresh ineqal: lt, the weighted error is 0.357
      split: dim 0, thresh 1.80, thresh ineqal: gt, the weighted error is 0.143
      split: dim 0, thresh 1.90, thresh ineqal: lt, the weighted error is 0.357
      split: dim 0, thresh 1.90, thresh ineqal: gt, the weighted error is 0.143
      split: dim 0, thresh 2.00, thresh ineqal: lt, the weighted error is 0.857
      split: dim 0, thresh 2.00, thresh ineqal: gt, the weighted error is 0.143
      split: dim 1, thresh 0.89, thresh ineqal: lt, the weighted error is 0.143
      split: dim 1, thresh 0.89, thresh ineqal: gt, the weighted error is 0.143
      split: dim 1, thresh 1.00, thresh ineqal: lt, the weighted error is 0.500
      split: dim 1, thresh 1.00, thresh ineqal: gt, the weighted error is 0.143
      split: dim 1, thresh 1.11, thresh ineqal: lt, the weighted error is 0.500
      split: dim 1, thresh 1.11, thresh ineqal: gt, the weighted error is 0.143
      split: dim 1, thresh 1.22, thresh ineqal: lt, the weighted error is 0.500
      split: dim 1, thresh 1.22, thresh ineqal: gt, the weighted error is 0.143
      split: dim 1, thresh 1.33, thresh ineqal: lt, the weighted error is 0.500
      split: dim 1, thresh 1.33, thresh ineqal: gt, the weighted error is 0.143
      split: dim 1, thresh 1.44, thresh ineqal: lt, the weighted error is 0.500
      split: dim 1, thresh 1.44, thresh ineqal: gt, the weighted error is 0.143
      split: dim 1, thresh 1.55, thresh ineqal: lt, the weighted error is 0.500
      split: dim 1, thresh 1.55, thresh ineqal: gt, the weighted error is 0.143
      split: dim 1, thresh 1.66, thresh ineqal: lt, the weighted error is 0.571
      split: dim 1, thresh 1.66, thresh ineqal: gt, the weighted error is 0.143
      split: dim 1, thresh 1.77, thresh ineqal: lt, the weighted error is 0.571
      split: dim 1, thresh 1.77, thresh ineqal: gt, the weighted error is 0.143
      split: dim 1, thresh 1.88, thresh ineqal: lt, the weighted error is 0.571
      split: dim 1, thresh 1.88, thresh ineqal: gt, the weighted error is 0.143
      split: dim 1, thresh 1.99, thresh ineqal: lt, the weighted error is 0.571
      split: dim 1, thresh 1.99, thresh ineqal: gt, the weighted error is 0.143
      split: dim 1, thresh 2.10, thresh ineqal: lt, the weighted error is 0.857
      split: dim 1, thresh 2.10, thresh ineqal: gt, the weighted error is 0.143
      classEst:  [[1. 1. 1. 1. 1.]]
      aggClassEst:  [[ 1.17568763  2.56198199 -0.77022252 -0.77022252  0.61607184]]
      total error:  0.0
      [[-0.69314718]
     [ 0.69314718]]
      [[-1.66610226]
     [ 1.66610226]]
      [[-2.56198199]
     [ 2.56198199]]
      [[-1.]
       [ 1.]]
      [Finished in 2.5s]
    
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,951评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,606评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,601评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,478评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,565评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,587评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,590评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,337评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,785评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,096评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,273评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,935评论 5 339
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,578评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,199评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,440评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,163评论 2 366
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,133评论 2 352