学习小组Day6笔记--大水

0.0 R包

顾名思义,应该是一个装着什么东西的包裹,包括

代码(不仅仅 是 R 代码!),包及内部函数相关的文档,一些以检查一切是否正常工作的测试(some tests to check everything works as it should),以及数据集。
R 包初学者指南

1. 使用dplyr包的准备工作

添加镜像并下载

options("repos" = c(CRAN="https://mirrors.tuna.tsinghua.edu.cn/CRAN/"))
options(BioC_mirror="https://mirrors.ustc.edu.cn/bioc/")

以上代码添加镜像,CRAN列对应清华镜像,BioC_mirror对应中科大镜像

install.packages("dplyr")

以上代码对应安装dplyr

library()
require()

以上代码对应加载 R包

2. dplyr五个基础函数

全部以简化版iris作为数据集进行实验操作

  n <- iris[c(1:2,51:52,101:102),]

指n保留了iris的1、2、51、52、101、102行

 x #iris
    Sepal.Length Sepal.Width Petal.Length Petal.Width    Species
1            5.1         3.5          1.4         0.2     setosa
2            4.9         3.0          1.4         0.2     setosa
3            4.7         3.2          1.3         0.2     setosa
4            4.6         3.1          1.5         0.2     setosa
5            5.0         3.6          1.4         0.2     setosa
6            5.4         3.9          1.7         0.4     setosa
7            4.6         3.4          1.4         0.3     setosa
8            5.0         3.4          1.5         0.2     setosa
9            4.4         2.9          1.4         0.2     setosa
10           4.9         3.1          1.5         0.1     setosa
11           5.4         3.7          1.5         0.2     setosa
12           4.8         3.4          1.6         0.2     setosa
13           4.8         3.0          1.4         0.1     setosa
14           4.3         3.0          1.1         0.1     setosa
15           5.8         4.0          1.2         0.2     setosa
16           5.7         4.4          1.5         0.4     setosa
17           5.4         3.9          1.3         0.4     setosa
18           5.1         3.5          1.4         0.3     setosa
19           5.7         3.8          1.7         0.3     setosa
20           5.1         3.8          1.5         0.3     setosa
21           5.4         3.4          1.7         0.2     setosa
22           5.1         3.7          1.5         0.4     setosa
23           4.6         3.6          1.0         0.2     setosa
24           5.1         3.3          1.7         0.5     setosa
25           4.8         3.4          1.9         0.2     setosa
26           5.0         3.0          1.6         0.2     setosa
27           5.0         3.4          1.6         0.4     setosa
28           5.2         3.5          1.5         0.2     setosa
29           5.2         3.4          1.4         0.2     setosa
30           4.7         3.2          1.6         0.2     setosa
31           4.8         3.1          1.6         0.2     setosa
32           5.4         3.4          1.5         0.4     setosa
33           5.2         4.1          1.5         0.1     setosa
34           5.5         4.2          1.4         0.2     setosa
35           4.9         3.1          1.5         0.2     setosa
36           5.0         3.2          1.2         0.2     setosa
37           5.5         3.5          1.3         0.2     setosa
38           4.9         3.6          1.4         0.1     setosa
39           4.4         3.0          1.3         0.2     setosa
40           5.1         3.4          1.5         0.2     setosa
41           5.0         3.5          1.3         0.3     setosa
42           4.5         2.3          1.3         0.3     setosa
43           4.4         3.2          1.3         0.2     setosa
44           5.0         3.5          1.6         0.6     setosa
45           5.1         3.8          1.9         0.4     setosa
46           4.8         3.0          1.4         0.3     setosa
47           5.1         3.8          1.6         0.2     setosa
48           4.6         3.2          1.4         0.2     setosa
49           5.3         3.7          1.5         0.2     setosa
50           5.0         3.3          1.4         0.2     setosa
51           7.0         3.2          4.7         1.4 versicolor
52           6.4         3.2          4.5         1.5 versicolor
53           6.9         3.1          4.9         1.5 versicolor
54           5.5         2.3          4.0         1.3 versicolor
55           6.5         2.8          4.6         1.5 versicolor
56           5.7         2.8          4.5         1.3 versicolor
57           6.3         3.3          4.7         1.6 versicolor
58           4.9         2.4          3.3         1.0 versicolor
59           6.6         2.9          4.6         1.3 versicolor
60           5.2         2.7          3.9         1.4 versicolor
61           5.0         2.0          3.5         1.0 versicolor
62           5.9         3.0          4.2         1.5 versicolor
63           6.0         2.2          4.0         1.0 versicolor
64           6.1         2.9          4.7         1.4 versicolor
65           5.6         2.9          3.6         1.3 versicolor
66           6.7         3.1          4.4         1.4 versicolor
67           5.6         3.0          4.5         1.5 versicolor
68           5.8         2.7          4.1         1.0 versicolor
69           6.2         2.2          4.5         1.5 versicolor
70           5.6         2.5          3.9         1.1 versicolor
71           5.9         3.2          4.8         1.8 versicolor
72           6.1         2.8          4.0         1.3 versicolor
73           6.3         2.5          4.9         1.5 versicolor
74           6.1         2.8          4.7         1.2 versicolor
75           6.4         2.9          4.3         1.3 versicolor
76           6.6         3.0          4.4         1.4 versicolor
77           6.8         2.8          4.8         1.4 versicolor
78           6.7         3.0          5.0         1.7 versicolor
79           6.0         2.9          4.5         1.5 versicolor
80           5.7         2.6          3.5         1.0 versicolor
81           5.5         2.4          3.8         1.1 versicolor
82           5.5         2.4          3.7         1.0 versicolor
83           5.8         2.7          3.9         1.2 versicolor
84           6.0         2.7          5.1         1.6 versicolor
85           5.4         3.0          4.5         1.5 versicolor
86           6.0         3.4          4.5         1.6 versicolor
87           6.7         3.1          4.7         1.5 versicolor
88           6.3         2.3          4.4         1.3 versicolor
89           5.6         3.0          4.1         1.3 versicolor
90           5.5         2.5          4.0         1.3 versicolor
91           5.5         2.6          4.4         1.2 versicolor
92           6.1         3.0          4.6         1.4 versicolor
93           5.8         2.6          4.0         1.2 versicolor
94           5.0         2.3          3.3         1.0 versicolor
95           5.6         2.7          4.2         1.3 versicolor
96           5.7         3.0          4.2         1.2 versicolor
97           5.7         2.9          4.2         1.3 versicolor
98           6.2         2.9          4.3         1.3 versicolor
99           5.1         2.5          3.0         1.1 versicolor
100          5.7         2.8          4.1         1.3 versicolor
101          6.3         3.3          6.0         2.5  virginica
102          5.8         2.7          5.1         1.9  virginica
103          7.1         3.0          5.9         2.1  virginica
104          6.3         2.9          5.6         1.8  virginica
105          6.5         3.0          5.8         2.2  virginica
106          7.6         3.0          6.6         2.1  virginica
107          4.9         2.5          4.5         1.7  virginica
108          7.3         2.9          6.3         1.8  virginica
109          6.7         2.5          5.8         1.8  virginica
110          7.2         3.6          6.1         2.5  virginica
111          6.5         3.2          5.1         2.0  virginica
112          6.4         2.7          5.3         1.9  virginica
113          6.8         3.0          5.5         2.1  virginica
114          5.7         2.5          5.0         2.0  virginica
115          5.8         2.8          5.1         2.4  virginica
116          6.4         3.2          5.3         2.3  virginica
117          6.5         3.0          5.5         1.8  virginica
118          7.7         3.8          6.7         2.2  virginica
119          7.7         2.6          6.9         2.3  virginica
120          6.0         2.2          5.0         1.5  virginica
121          6.9         3.2          5.7         2.3  virginica
122          5.6         2.8          4.9         2.0  virginica
123          7.7         2.8          6.7         2.0  virginica
124          6.3         2.7          4.9         1.8  virginica
125          6.7         3.3          5.7         2.1  virginica
126          7.2         3.2          6.0         1.8  virginica
127          6.2         2.8          4.8         1.8  virginica
128          6.1         3.0          4.9         1.8  virginica
129          6.4         2.8          5.6         2.1  virginica
130          7.2         3.0          5.8         1.6  virginica
131          7.4         2.8          6.1         1.9  virginica
132          7.9         3.8          6.4         2.0  virginica
133          6.4         2.8          5.6         2.2  virginica
134          6.3         2.8          5.1         1.5  virginica
135          6.1         2.6          5.6         1.4  virginica
136          7.7         3.0          6.1         2.3  virginica
137          6.3         3.4          5.6         2.4  virginica
138          6.4         3.1          5.5         1.8  virginica
139          6.0         3.0          4.8         1.8  virginica
140          6.9         3.1          5.4         2.1  virginica
141          6.7         3.1          5.6         2.4  virginica
142          6.9         3.1          5.1         2.3  virginica
143          5.8         2.7          5.1         1.9  virginica
144          6.8         3.2          5.9         2.3  virginica
145          6.7         3.3          5.7         2.5  virginica
146          6.7         3.0          5.2         2.3  virginica
147          6.3         2.5          5.0         1.9  virginica
148          6.5         3.0          5.2         2.0  virginica
149          6.2         3.4          5.4         2.3  virginica
150          5.9         3.0          5.1         1.8  virginica
> n  #简化后的iris
    Sepal.Length Sepal.Width Petal.Length Petal.Width    Species
1            5.1         3.5          1.4         0.2     setosa
2            4.9         3.0          1.4         0.2     setosa
51           7.0         3.2          4.7         1.4 versicolor
52           6.4         3.2          4.5         1.5 versicolor
101          6.3         3.3          6.0         2.5  virginica
102          5.8         2.7          5.1         1.9  virginica

2.1 mutate()——增加行

> mutate(n , newline = 1:6)
    Sepal.Length Sepal.Width Petal.Length Petal.Width    Species newline
1            5.1         3.5          1.4         0.2     setosa       1
2            4.9         3.0          1.4         0.2     setosa       2
51           7.0         3.2          4.7         1.4 versicolor       3
52           6.4         3.2          4.5         1.5 versicolor       4
101          6.3         3.3          6.0         2.5  virginica       5
102          5.8         2.7          5.1         1.9  virginica       6
> mutate(n , newline(error) = 7:1)
错误: 意外的'=' in "mutate(n , newline(error) ="
> mutate(n , newline(error) = 1:7)
错误: 意外的'=' in "mutate(n , newline(error) ="
> mutate(n , newline(error) = 1:5)
错误: 意外的'=' in "mutate(n , newline(error) ="

几次小尝试后发现,貌似只能加与行数相等数目的数字,或按照教程进行行与行之间的运算,并用text保存了help(mutate)的相关信息留稍后查看

2.2 select()——按列筛选

> select(test,1)
Error in select(test, 1) : 找不到对象'test'
> select(n,1)
    Sepal.Length
1            5.1
2            4.9
51           7.0
52           6.4
101          6.3
102          5.8
> select(n,c(1,5))
    Sepal.Length    Species
1            5.1     setosa
2            4.9     setosa
51           7.0 versicolor
52           6.4 versicolor
101          6.3  virginica
102          5.8  virginica
> select(n,Sepal.Length)
    Sepal.Length
1            5.1
2            4.9
51           7.0
52           6.4
101          6.3
102          5.8
> 
> vars <- c("newline", "Petal.Width")
> select(n, one_of(vars))
    Petal.Width
1           0.2
2           0.2
51          1.4
52          1.5
101         2.5
102         1.9
Warning message:
Unknown columns: `newline` 
> select(test, vars)
Error in select(test, vars) : 找不到对象'test'
> select(n, vars)
Note: Using an external vector in selections is ambiguous.
i Use `all_of(vars)` instead of `vars` to silence this message.
i See <https://tidyselect.r-lib.org/reference/faq-external-vector.html>.
This message is displayed once per session.
错误: Can't subset columns that don't exist.
x Column `newline` doesn't exist.
Run `rlang::last_error()` to see where the error occurred.
> select(n, all_of(vars))
错误: Can't subset columns that don't exist.
x Column `newline` doesn't exist.
Run `rlang::last_error()` to see where the error occurred.
> View(n)
> rlang::last_error()
<error/vctrs_error_subscript_oob>
Can't subset columns that don't exist.
x Column `newline` doesn't exist.
Backtrace:
  1. dplyr::select(n, all_of(vars))
  2. dplyr:::select.data.frame(n, all_of(vars))
  3. tidyselect::eval_select(expr(c(...)), .data)
  4. tidyselect:::eval_select_impl(...)
 12. tidyselect:::vars_select_eval(...)
 13. tidyselect:::walk_data_tree(expr, data_mask, context_mask)
 14. tidyselect:::eval_c(expr, data_mask, context_mask)
 15. tidyselect:::reduce_sels(node, data_mask, context_mask, init = init)
 16. tidyselect:::walk_data_tree(new, data_mask, context_mask)
 17. tidyselect:::as_indices_sel_impl(...)
 18. tidyselect:::as_indices_impl(x, vars, strict = strict)
 19. tidyselect:::chr_as_locations(x, vars)
 20. vctrs::vec_as_location(x, n = length(vars), names = vars)
 22. vctrs:::stop_subscript_oob(...)
 23. vctrs:::stop_subscript(...)
Run `rlang::last_trace()` to see the full context.

经历了一些小波折,不过可以确认的是select(数据集,第几列/列名/c(列号,列号/含有列名的变量))
同时发现,上一个函数mutate进行的变化并没有保存到原数据集中

2.3 filter()——筛选行

> filter(n, Species == "newline") #很奇怪,这一行居然没有报错,而是正常显示了有列名的空结果
[1] Sepal.Length Sepal.Width  Petal.Length Petal.Width  Species     
<0 行> (或0-长度的row.names)
> View(n)
> filter(n, Species == "setosa")
  Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1          5.1         3.5          1.4         0.2  setosa
2          4.9         3.0          1.4         0.2  setosa
> filter(n, Species == "setosa"&Sepal.Length > 5 )
  Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1          5.1         3.5          1.4         0.2  setosa
> filter(n, Species %in% c("setosa","versicolor"))
  Sepal.Length Sepal.Width Petal.Length Petal.Width    Species
1          5.1         3.5          1.4         0.2     setosa
2          4.9         3.0          1.4         0.2     setosa
3          7.0         3.2          4.7         1.4 versicolor
4          6.4         3.2          4.5         1.5 versicolor

2.4 arrange()——排序

> arrange(n, Sepal.Length)
  Sepal.Length Sepal.Width Petal.Length Petal.Width    Species
1          4.9         3.0          1.4         0.2     setosa
2          5.1         3.5          1.4         0.2     setosa
3          5.8         2.7          5.1         1.9  virginica
4          6.3         3.3          6.0         2.5  virginica
5          6.4         3.2          4.5         1.5 versicolor
6          7.0         3.2          4.7         1.4 versicolor
> arrange(n, desc(Sepal.Length))
  Sepal.Length Sepal.Width Petal.Length Petal.Width    Species
1          7.0         3.2          4.7         1.4 versicolor
2          6.4         3.2          4.5         1.5 versicolor
3          6.3         3.3          6.0         2.5  virginica
4          5.8         2.7          5.1         1.9  virginica
5          5.1         3.5          1.4         0.2     setosa
6          4.9         3.0          1.4         0.2     setosa
> arrange(n,species)
错误: arrange() failed at implicit mutate() step. 
* Problem with `mutate()` input `..1`.
x 找不到对象'species'
i Input `..1` is `species`.
Run `rlang::last_error()` to see where the error occurred.

有意思的事情发生了,我没有办法用species排序,因此没有实现EXCEL中的按字母顺序排列功能,会不会与数据集文件的结构有关呢,有待探究。
另:双重排序如何实现呢,既然R语言可以对大规模数据简化操作进行分析,应该存在这种操作。

2.5 summarise()——汇总

> summarise(n, mean(Sepal.Length), sd(Sepal.Length))
  mean(Sepal.Length) sd(Sepal.Length)
1           5.916667        0.8084965
> group_by(n, Species)
# A tibble: 6 x 5
# Groups:   Species [3]
  Sepal.Length Sepal.Width Petal.Length Petal.Width Species   
         <dbl>       <dbl>        <dbl>       <dbl> <fct>     
1          5.1         3.5          1.4         0.2 setosa    
2          4.9         3            1.4         0.2 setosa    
3          7           3.2          4.7         1.4 versicolor
4          6.4         3.2          4.5         1.5 versicolor
5          6.3         3.3          6           2.5 virginica 
6          5.8         2.7          5.1         1.9 virginica 
> summarise(group_by(n, Species),mean(Sepal.Length), sd(Sepal.Length))
# A tibble: 3 x 3
  Species    `mean(Sepal.Length)` `sd(Sepal.Length)`
  <fct>                     <dbl>              <dbl>
1 setosa                     5                 0.141
2 versicolor                 6.7               0.424
3 virginica                  6.05              0.354

通过summarisegroup_by一同实现了计算平均数mean计算标准差sd和根据某一列值分组计算对应组标准差的功能,很是方便!

管道函数

%>%来自dplyr包的管道函数,其作用是将前一步的结果直接传参给下一步的函数,从而省略了中间的赋值步骤,可以大量减少内存中的对象,节省内存
符号%>%,这是管道操作,其意思是将%>%左边的对象传递给右边的函数,作为第一个选项的设置(或剩下唯一一个选项的设置)
管道函数很简单

> n %>% 
+     group_by(Species) %>% 
+     summarise(mean(Sepal.Length), sd(Sepal.Length))
# A tibble: 3 x 3
  Species    `mean(Sepal.Length)` `sd(Sepal.Length)`
  <fct>                     <dbl>              <dbl>
1 setosa                     5                 0.141
2 versicolor                 6.7               0.424
3 virginica                  6.05              0.354

count统计某列的unique值

> count(n,Species)
     Species n
1     setosa 2
2 versicolor 2
3  virginica 2

dplyr处理关系数据

inner_join(test1, test2, by = "x") # 内联,将1和2按照x值的对应合并,取交集
left_join(test1, test2, by = 'x') # 将1和2按照1的x值的对应合并
left_join(test2, test1, by = 'x') # 将1和2按照2的x值的对应合并
full_join( test1, test2, by = 'x') # 全连 有对应连对应,没对应空白
semi_join(x = test1, y = test2, by = 'x')  # 能够与y表匹配的x表值
anti_join(x = test2, y = test1, by = 'x') # 不能够与y表匹配的x表值

test1 <- data.frame(x = c(1,2,3,4), y = c(10,20,30,40))
test1
##   x  y
## 1 1 10
## 2 2 20
## 3 3 30
## 4 4 40
test2 <- data.frame(x = c(5,6), y = c(50,60))
test2
##   x  y
## 1 5 50
## 2 6 60
test3 <- data.frame(z = c(100,200,300,400))
test3
##     z
## 1 100
## 2 200
## 3 300
## 4 400
bind_rows(test1, test2)
##   x  y
## 1 1 10
## 2 2 20
## 3 3 30
## 4 4 40
## 5 5 50
## 6 6 60
bind_cols(test1, test3)
##   x  y   z
## 1 1 10 100
## 2 2 20 200
## 3 3 30 300
## 4 4 40 400

最后这个没太看懂,明天再参透一下!明天加油!

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,014评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,796评论 3 386
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,484评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,830评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,946评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,114评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,182评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,927评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,369评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,678评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,832评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,533评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,166评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,885评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,128评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,659评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,738评论 2 351

推荐阅读更多精彩内容