Kaldi(A5)语言模型及HCLG.fst生成

这节介绍一下如何修改生成适合自己场景的语言模型。

Ref

Online decoding in Kaldi(Nnet2) http://kaldi-asr.org/doc/online_decoding.html

修改语言模型

首先,我们为什么要修改语言模型?虽然已有现成的Fisher_English或者Librispeech的HCLG.fst,但是他们用到的是3-gram,也就是说上下文一共是3个单词,而且文本涵盖的范围很广。假如我只想在特定范围内进行识别呢?比如仅仅在对某个智能音箱的指令范围内?这就需要我们用自己提供的语料库来限定其识别的范围以提升准确度,并且如果范围较小的话还可以提升实时性。
参考“Example for using your own language model with existing online-nnet2 models”,我们只需要准备一个文本文件作为语料库即可。在这里文档提到了需要使用SRILM这个工具来生成模型,所以先来安装它。

安装SRILM

首先请参考
SRILM的安装与使用
官方Doc
提到了还需要安装TCL,来到tcl download
下载之后输入以下命令进行安装

wget https://prdownloads.sourceforge.net/tcl/tcl8.6.7-src.tar.gz
tar vxzf tcl8.6.7-src.tar.gz
cd tcl8.6.7/unix
./configure
make
sudo make install

然后继续SRILM的安装

vim Makefile
#修改为SRILM=/home/dale/SRILM
make World
PATH=$PATH:/home/dale/SRILM/bin/i686-m64:/home2/zhangzhan/SRILM/bin
MANPATH=$MANPATH:/home/dale/SRILM/man
make test

OpenSLR

首先看看提供给我们下载的语言模型(如果想要更好的识别率可以从这些语言模型中下载,然后根据文档中提供的命令重新训练出一个HCLG.fst
http://www.openslr.org/11/


可以看到3-gram和4-gram差的还是很大的…在这里我的项目对实时性要求很高,所以我准备用2-gram。

生成ARPA语言模型

准备好自己的文本为train_text.txt

PATH=$PATH:/home2/zhangzhan/SRILM/bin/i686-m64:/home2/zhangzhan/SRILM/bin
MANPATH=$MANPATH:/home2/zhangzhan/SRILM/man
#生成计数文件
ngram-count -text train_text.txt -order 2 -write xgn_count
#生成ARPA LM
ngram-count -read xgn_count -order 2 -lm xgn_lm -interpolate -kndiscount
gzip xgn_lm

好了,我们的语言模型已经生成好了,名为xgn_lm.gz,下面根据这个文件生成Kaldi所需的HCLG.fst

生成HCLG.fst

此处参考官方Doc给出的过程即可,需要注意的是下面命令中将会用到训练时的一些文件,所以需要先跑过训练脚本才能修改。

PATH=$PATH:/home2/zhangzhan/kaldi-trunk/src/lmbin/:/home2/zhangzhan/kaldi-trunk/src/fstbin:/home2/zhangzhan/kaldi-trunk/tools/openfst-1.6.5/bin/:/home2/zhangzhan/kaldi-trunk/src/bin/
dict_dir=data/local/dict                # The dict directory provided by the online-nnet2 models
lm=xgn_lm.gz                      # ARPA format LM you just built.记得在这里修改为刚才构建的
lang=data/lang_chain                          # Old lang directory provided by the online-nnet2 models
lang_own=data/lang_own                  # New lang directory we are going to create, which contains the new language model
~/kaldi-trunk/egs/wsj/s5/utils/format_lm.sh $lang $lm $dict_dir/lexicon.txt $lang_own
graph_own_dir=graph_own
#model_dir=nnet_a_gpu_online
model_dir=tdnn_1b_sp
~/kaldi-trunk/egs/wsj/s5/utils/mkgraph.sh $lang_own $model_dir $graph_own_dir 

最后就在graph_own_dir下面生成好了经过我们定制的HCLG.fst
至此,我们可以搭建一个属于自己的简单语音识别系统了。后续将会记录一些补充内容。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,928评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,192评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,468评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,186评论 1 286
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,295评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,374评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,403评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,186评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,610评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,906评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,075评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,755评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,393评论 3 320
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,079评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,313评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,934评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,963评论 2 351

推荐阅读更多精彩内容

  • 很多人觉得绘画很难,很多人觉得很简单,大部分画不好的人都把这些归咎于自己没天赋,其实,在我看来,你要成为大画家,确...
    摄影师超超阅读 922评论 2 20
  • 我记得,我骑共享单车的样子,连自己都想笑。我记得,我开车的样子,连自己都逗乐。我记得,无论在路上行驶什么交通...
    8e0b8093b46f阅读 78评论 0 4
  • 鸽子和狗吠。人对于声音是相当敏感的。世界万物,都会发出自己的声音。水杯与水的摩擦声,空调运行的声音,摩托车启动的噪...
    被踩着的尾巴阅读 167评论 0 2
  • 哇,运城的天真美,云也变化极多。 你看,这朵云像一架飞船,停留在天空中,好像还在等待着它的同伴们。 ...
    06小石头曾立轩阅读 162评论 0 0
  • 《无题》—— littlesen (山木)曲曲池边路,春来少人行。含水芙蓉叶,春去气犹清。夕岚分彩翠,高树藏莺声。...
    岚风的叶子阅读 1,409评论 0 0