一些常量:
-
- 一些特殊的hash值
//特殊的node hash值 在后续使用中判断是否在扩容、是否为树节点等 static final int MOVED = -1; // hash for forwarding nodes static final int TREEBIN = -2; // hash for roots of trees static final int RESERVED = -3; // hash for transient reservations
-
- sizeCtl(很有用)
/** * 初始化时值为-1 * 扩容时sizeCtl的低位为扩容线程数 * 如果table未初始化,表示table需要初始化的大小。 * 如果table初始化完成,表示table的容量,默认是table大小的0.75倍 * 后续判断需要用到这个 */ private transient volatile int sizeCtl;
-
- 链表和树转换条件
//桶的数量大于64时转红黑树 static final int MIN_TREEIFY_CAPACITY = 64; //链表和树转换的阈值 static final int TREEIFY_THRESHOLD = 8;
一些方法:
HASH_BITS = 0x7fffffff
先用高16位异或然后和HASH_BITS进行&计算 ,减少碰撞
static final int spread(int h) {
return (h ^ (h >>> 16)) & HASH_BITS;
}
结果为最小的可容纳值(2的幂次),如输入18结果为32
private static final int tableSizeFor(int c) {
int n = c - 1;
n |= n >>> 1;
n |= n >>> 2;
n |= n >>> 4;
n |= n >>> 8;
n |= n >>> 16;
return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
}
相对扩容来说,get、putVal比较简单- -
先说一下,当表的长度为2的幂次时,(h % n) 和 (h & (n - 1))效果相同,以此来确定槽的位置。
public V get(Object key) {
Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
//用key的hash重新散列,用来获取槽的位置
int h = spread(key.hashCode());
if ((tab = table) != null && (n = tab.length) > 0 &&
//获取槽的位置
(e = tabAt(tab, (n - 1) & h)) != null) {
// e 为对应槽的初始Node
if ((eh = e.hash) == h) {
if ((ek = e.key) == key || (ek != null && key.equals(ek)))
return e.val;
}
//扩容中
else if (eh < 0)
//在槽中遍历查找,正在扩容所以节点为ForwardingNode,ForwardingNode中的find实际上是在扩容后的新表中进行查找
return (p = e.find(h, key)) != null ? p.val : null;
//在槽遍历查找
while ((e = e.next) != null) {
if (e.hash == h &&
((ek = e.key) == key || (ek != null && key.equals(ek))))
return e.val;
}
}
return null;
}
put实际上调用putVal
public V put(K key, V value) {
return putVal(key, value, false);
}
final V putVal(K key, V value, boolean onlyIfAbsent) {
if (key == null || value == null) throw new NullPointerException();
//再次计算
int hash = spread(key.hashCode());
int binCount = 0;
for (Node<K,V>[] tab = table;;) {
Node<K,V> f; int n, i, fh;
if (tab == null || (n = tab.length) == 0)
//当前table为空则执行初始化
tab = initTable();
//每次循环都重新计算槽的位置(防止中途扩容导致槽位置变动)
//f为对应槽位置的节点,i为对应槽位置,如果对应槽的位置是空的就直接cas添加
else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
if (casTabAt(tab, i, null,
new Node<K,V>(hash, key, value, null)))
break; // no lock when adding to empty bin
}
//MOVED = -1,ForwardingNode继承Node,只在扩容中使用,它的key,value,next全是null,hash=-1
else if ((fh = f.hash) == MOVED)
//帮助扩容
tab = helpTransfer(tab, f);
else {
V oldVal = null;
//同步锁
synchronized (f) {
//对应槽的初始节点为f则继续,否则头节点发生改变,重新循环
if (tabAt(tab, i) == f) {
//是一个链表,不是树
if (fh >= 0) {
binCount = 1;
for (Node<K,V> e = f;; ++binCount) {
K ek;
//存在相同的key,替换value
if (e.hash == hash &&
((ek = e.key) == key ||
(ek != null && key.equals(ek)))) {
oldVal = e.val;
if (!onlyIfAbsent)
e.val = value;
break;
}
Node<K,V> pred = e;
//不存在相同的key,在最后添加节点
if ((e = e.next) == null) {
pred.next = new Node<K,V>(hash, key,
value, null);
break;
}
}
}
//为树的根节点,用树的方式添加(红黑树的根节点hash值为-2)
else if (f instanceof TreeBin) {
Node<K,V> p;
binCount = 2;
if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
value)) != null) {
oldVal = p.val;
if (!onlyIfAbsent)
p.val = value;
}
}
}
}
//判断要不要转成树
if (binCount != 0) {
if (binCount >= TREEIFY_THRESHOLD)
treeifyBin(tab, i);
if (oldVal != null)
return oldVal;
break;
}
}
}
//元素数量+1,看看要不要扩容
addCount(1L, binCount);
return null;
}
简单的结束,transfer开始,orz 看了好久还是只有大概TAT
之前说的ForwardingNode,这个只有扩容时会用到
static final class ForwardingNode<K,V> extends Node<K,V> {
final Node<K,V>[] nextTable;
ForwardingNode(Node<K,V>[] tab) {
super(MOVED, null, null, null);
this.nextTable = tab;
}
Node<K,V> find(int h, Object k) {
// loop to avoid arbitrarily deep recursion on forwarding nodes
outer: for (Node<K,V>[] tab = nextTable;;) {
Node<K,V> e; int n;
if (k == null || tab == null || (n = tab.length) == 0 ||
(e = tabAt(tab, (n - 1) & h)) == null)
return null;
for (;;) {
int eh; K ek;
if ((eh = e.hash) == h &&
((ek = e.key) == k || (ek != null && k.equals(ek))))
return e;
if (eh < 0) {
if (e instanceof ForwardingNode) {
tab = ((ForwardingNode<K,V>)e).nextTable;
continue outer;
}
else
return e.find(h, k);
}
if ((e = e.next) == null)
return null;
}
}
}
}
transfer
private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
int n = tab.length, stride;
//NCPU=cpu核心线程数 MIN_TRANSFER_STRIDE=16
if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
stride = MIN_TRANSFER_STRIDE; // subdivide range
//如果nextTab为null,先进行一次初始化
//外围保证第一个线程调用此方法时,参数 nextTab 为 null
//之后参与协助的线程调用时,nextTab不会为null
if (nextTab == null) { // initiating
try {
//构造一个nextTable对象,容量为原来的两倍
@SuppressWarnings("unchecked")
Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
nextTab = nt;
} catch (Throwable ex) { // try to cope with OOME
sizeCtl = Integer.MAX_VALUE;
return;
}
//nextTable是过渡的table表,别的地方基本用不到
nextTable = nextTab;
transferIndex = n;
}
int nextn = nextTab.length;
//构造一个节点,用于标记(之前代码中有碰到过)
ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
//这个值为true说明节点已经处理
boolean advance = true;
boolean finishing = false; // to ensure sweep before committing nextTab
//这边圈定范围
for (int i = 0, bound = 0;;) {
Node<K,V> f; int fh;
//一次遍历原hash表的节点
//简单理解:i 指向了 transferIndex,bound 指向了 transferIndex-stride
while (advance) {
int nextIndex, nextBound;
if (--i >= bound || finishing)
advance = false;
//将 transferIndex 值赋给 nextIndex
//这里 transferIndex 一旦小于等于 0,说明原数组的所有位置都有相应的线程去处理
else if ((nextIndex = transferIndex) <= 0) {
i = -1;
advance = false;
}
else if (U.compareAndSwapInt
(this, TRANSFERINDEX, nextIndex,
nextBound = (nextIndex > stride ?
nextIndex - stride : 0))) {
//看括号中的代码,nextBound 是这次迁移任务的边界,注意,是从后往前
bound = nextBound;
i = nextIndex - 1;
advance = false;
}
}
if (i < 0 || i >= n || i + n >= nextn) {
int sc;
//如果所有的节点都已经完成复制工作 就把nextTable赋值给table 清空临时对象nextTable
if (finishing) {
nextTable = null;
table = nextTab;
//扩容阈值设置为原来容量的1.5倍 依然相当于现在容量的0.75倍
sizeCtl = (n << 1) - (n >>> 1);
return;
}
//sizeCtl 在迁移前会设置为 (rs << RESIZE_STAMP_SHIFT) + 2
//然后,每有一个线程参与迁移就会将 sizeCtl 加 1,
//这里使用 CAS 操作对 sizeCtl 进行减 1,代表做完了属于自己的任务
if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
//任务结束,方法退出
if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
return;
//到这里,说明 (sc - 2) == resizeStamp(n) << RESIZE_STAMP_SHIFT,
//也就是说,所有的迁移任务都做完了,也就会进入到上面的 if(finishing){} 分支了
finishing = advance = true;
i = n; // recheck before commit
}
}
//如果遍历到的节点为空 则放入ForwardingNode指针
else if ((f = tabAt(tab, i)) == null)
advance = casTabAt(tab, i, null, fwd);
//存在ForwardingNode,已经处理了,跳过
else if ((fh = f.hash) == MOVED)
advance = true; // already processed
else {
//锁
synchronized (f) {
//和putVal一样,检查节点
if (tabAt(tab, i) == f) {
Node<K,V> ln, hn;
if (fh >= 0) {
//下面这一块和 Java7 中的 ConcurrentHashMap 迁移是差不多的,
//需要将链表一分为二,
//找到原链表中的 lastRun,然后 lastRun 及其之后的节点是一起进行迁移的
//lastRun 之前的节点需要进行克隆,然后分到两个链表中
int runBit = fh & n;
Node<K,V> lastRun = f;
for (Node<K,V> p = f.next; p != null; p = p.next) {
int b = p.hash & n;
if (b != runBit) {
runBit = b;
lastRun = p;
}
}
if (runBit == 0) {
ln = lastRun;
hn = null;
}
else {
hn = lastRun;
ln = null;
}
for (Node<K,V> p = f; p != lastRun; p = p.next) {
int ph = p.hash; K pk = p.key; V pv = p.val;
if ((ph & n) == 0)
ln = new Node<K,V>(ph, pk, pv, ln);
else
hn = new Node<K,V>(ph, pk, pv, hn);
}
// 其中的一个链表放在新数组的位置 i
setTabAt(nextTab, i, ln);
// 另一个链表放在新数组的位置 i+n
setTabAt(nextTab, i + n, hn);
// 将原数组该位置处设置为 fwd,代表该位置已经处理完毕,
// 其他线程一旦看到该位置的 hash 值为 MOVED,就不会进行迁移了
setTabAt(tab, i, fwd);
advance = true;
}
else if (f instanceof TreeBin) {
// 红黑树的迁移
TreeBin<K,V> t = (TreeBin<K,V>)f;
TreeNode<K,V> lo = null, loTail = null;
TreeNode<K,V> hi = null, hiTail = null;
int lc = 0, hc = 0;
for (Node<K,V> e = t.first; e != null; e = e.next) {
int h = e.hash;
TreeNode<K,V> p = new TreeNode<K,V>
(h, e.key, e.val, null, null);
if ((h & n) == 0) {
if ((p.prev = loTail) == null)
lo = p;
else
loTail.next = p;
loTail = p;
++lc;
}
else {
if ((p.prev = hiTail) == null)
hi = p;
else
hiTail.next = p;
hiTail = p;
++hc;
}
}
// 如果一分为二后,节点数少于 8,那么将红黑树转换回链表
ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
(hc != 0) ? new TreeBin<K,V>(lo) : t;
hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
(lc != 0) ? new TreeBin<K,V>(hi) : t;
// 将 ln 放置在新数组的位置 i
setTabAt(nextTab, i, ln);
// 将 hn 放置在新数组的位置 i+n
setTabAt(nextTab, i + n, hn);
// 将原数组该位置处设置为 fwd,代表该位置已经处理完毕,
// 其他线程一旦看到该位置的 hash 值为 MOVED,就不会进行迁移了
setTabAt(tab, i, fwd);
advance = true;
}
}
}
}
}
}
tryPresize
首先只有两个地方调用了这个方法
putAll(Map<? extends K, ? extends V> m) 中 tryPresize(m.size());
-
treeifyBin(Node<K,V>[] tab, int index) 中
if ((n = tab.length) < MIN_TREEIFY_CAPACITY) //这边已经扩了一倍 tryPresize(n << 1);
private final void tryPresize(int size) {
//这边再次翻倍,就是扩到了4倍,emmmm不是很理解这个
int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
tableSizeFor(size + (size >>> 1) + 1);
int sc;
while ((sc = sizeCtl) >= 0) {
Node<K,V>[] tab = table; int n;
if (tab == null || (n = tab.length) == 0) {
n = (sc > c) ? sc : c;
if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
try {
if (table == tab) {
@SuppressWarnings("unchecked")
Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
table = nt;
sc = n - (n >>> 2);
}
} finally {
sizeCtl = sc;
}
}
}
else if (c <= sc || n >= MAXIMUM_CAPACITY)
break;
else if (tab == table) {
int rs = resizeStamp(n);
if (sc < 0) {
Node<K,V>[] nt;
//这边源码错了详见
//https://bugs.java.com/bugdatabase/view_bug.do?bug_id=JDK-8214427
//修正为 (sc >>> RESIZE_STAMP_SHIFT) == rs + 1 || (sc >>> RESIZE_STAMP_SHIFT) == rs + MAX_RESIZERS
if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
transferIndex <= 0)
break;
if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
transfer(tab, nt);
}
else if (U.compareAndSwapInt(this, SIZECTL, sc,
(rs << RESIZE_STAMP_SHIFT) + 2))
transfer(tab, null);
}
}
}