Kmergenie

在进行基因组正式组装前,很重要的一步就是评估基因组的Kmer,这直接影响基因组组装的准确度。这次介绍的软件Kmergenie运行简单,不需要干预即可预测Kmer的“最优”值。

给定一组输入,KmerGenie首先计算多个K值的k-mer丰度直方图。然后,对每个K值,它预测数据集中不同基因组k-mer的数量,并返回这个数字最大化的k-mer长度。实验表明,KmerGenie选择的k-mer长度进行组装的结果接近最佳的组装。

Kmergenie安装

1. 下载 kmergenie

2. 安装需要依赖 python(2.7以上),Rscript(R),zlib

3. 如果具有root权限,可以直接python setup.py install  如果安装到用户环境中,添加 --user 参数。

Kmergenie使用

Usage:

kmergenie <read_file> [options]

Options:

--diploid use the diploid model (default: haploid model),指定二倍体模式,默认是单倍体

--one-pass skip the second pass to estimate k at 2 bp resolution (default: two passes),一次运行,省略第二次的评估

-k <value> largest k-mer size to consider (default: 121),系统考虑的最大K值

-l <value> smallest k-mer size to consider (default: 15),系统考虑的最低值

-s <value> interval between consecutive kmer sizes (default: 10)

-e <value> k-mer sampling value (default: auto-detected to use ~200 MB memory/thread)

-t <value> number of threads (default: number of cores minus one),线程数

-o <prefix> prefix of the output files (default: histograms),结果输出的前缀名称

--debug developer output of R scripts

--orig-hist legacy histogram estimation method (slower, less accurate)

Kmergenie可以针对一个fastq文件,也可以针对多个文件,当需要输入多个文件时,列出文件列表,一行一个文件。

使用提示:

       * The diploid model should only be used for moderate-high heterozygosity rates. The haploid model works better when only one peak is visible in the histograms (indicating low heterozygosity).

参考文献:

R. Chikhi, P. Medvedev, Informed and automated k-mer size selection for genome assembly, Bioinformatics (2014) 30 (1): 31-37.

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,294评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,780评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,001评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,593评论 1 289
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,687评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,679评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,667评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,426评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,872评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,180评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,346评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,019评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,658评论 3 323
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,268评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,495评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,275评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,207评论 2 352

推荐阅读更多精彩内容