Kafka消息系统基础知识索引

我们在上篇文章中,详细说明了KAFKA是否适合用在业务系统中,但有些朋友,还不知道KAFKA为何物,以及它为何存在。这在工作和面试中是比较吃亏的,因为不知道什么时候起,KAFKA似乎成了工程师的必备技能。

消息系统是什么

典型场景

上图是一些小系统的典型架构。考虑订单的业务场景,有大量的请求指向我们的业务系统,如果直接经过复杂的业务逻辑进入业务表,将会有大量请求超时失败。所以我们加入了一张中间缓冲表(或者Redis),用来承接用户的请求,然后,有一个定时任务,不断的从缓冲表中获取数据,进行真正的业务逻辑处理。

这种设计有以下几个问题:

1.定时任务的轮询间隔不好控制,业务处理容易延迟。

2.无法横向扩容处理能力,且会引入分布式锁、顺序性保证等问题。

3.当其他业务也需要这些订单数据的时候,业务逻辑就必须要加入到定时任务里。

当访问量增加、业务逻辑复杂化的时候,消息队列就呼之欲出了。

请求会暂存在消息队列,然后实时通过推(或者拉)的方式进行处理。

在此场景下,消息队列充当了削峰和冗余的组件。


消息系统的作用

削峰:用于承接超出业务系统处理能力的请求,使业务平稳运行,这能够大量节约成本,比如某些秒杀活动,并不是针对峰值设计容量。

缓冲:在服务层和缓慢的落地层作为缓冲层存在,作用与削峰类似,但主要用于服务内数据流转,比如批量短信发送。

解耦:项目尹始,并不能确定具体需求,消息队列可以作为一个接口层,解耦重要的业务流程,只需要遵守约定,针对数据编程即可获取扩展能力。

冗余:消息数据能够采用一对多的方式,供多个毫无关联的业务使用。

健壮性:消息队列可以堆积请求,所以消费端业务即使短时间死掉,也不会影响主要业务的正常进行。

消息系统要求

消息系统即然这么重要,那么除了能够保证高可用,对它本身的特性也有较高需求。大体有下面几点:

性能要高:包含消息投递和消息消费,都要快,一般通过增加分片数获取并行处理能力。

消息要可靠:在某些场景,不能丢消息。生产、消费、MQ端都不能丢消息,一般通过增加副本,强制刷盘来解决。

扩展性要好:能够陪你把项目做大,陪你到天荒地老,增加节点集群增大后,不能降低性能。

生态成熟:监控、运维、多语言支持、社区的活跃。


基本功能

Kafka是一个分布式消息(存储)系统。分布式系统通过分片增加并行度,通过副本增加可靠性,kafka也不例外。我们来看一下它的结构,顺便解释一下其中的术语。

你在一台机器上安装了Kafka,那么这台机器就叫Broker,KAFKA集群包含了一个或者多个这样的实例。

负责往KAFKA写入数据的组件就叫做Producer,消息的生产者一般写在业务系统里。

发送到KAFKA的消息可能有多种,如何区别其分类?就是Topic的概念,一个主题分布式化后,可能会存在多个Broker上。

将Topic拆成多个段,增加并行度后,拆成的每个部分叫做Partition,分区一般平均分布在所有机器上。

那些消费Kafka中数据的应用程序,就叫做Consumer,我们给某个主题的某个消费业务起一个名字,这么名字就叫做Consumer Group。


扩展功能

Connector 连接器Task,包含Source和Sink两种接口,给用户提供了自定义数据流转的可能,比如从JDBC导入到Kafka,或者将Kafka数据直接落地到DB。

Stream 类似于Spark Stream,能够进行流数据处理。但它本身没有集群,只是在KAFKA集群上的抽象。如果你想要实时的流处理,且不需要Hadoop生态的某些东西,那么这个比较适合你。Java架构交流学习圈:874811168、面向1-3年经验、Java开发人员、帮助突破瓶颈 提升思维能力


我们的消息就是写在主题里。有了多个Topic,就可以对消息进行归类与隔离,比如登录信息写在user_activity_topic,日志消息写在log_topic中。

每一个topic都可以调整其分区数量。假设我们的集群有三个Broker,那么当分区数量为1的时候,消息就仅写在其中一个节点上;当我们的分区为3,消息会根据hash写到三个节点上;当我们的分区为6,那每个节点将会有2个分区信息。增加分区可以增加并行度,但不是越多越好。一般,6-12最佳,最好能够被节点数整除,避免数据倾斜。

每个分区都由一系列有序的、不可变的消息组成,这些消息被顺序的追加。分区中的每个消息都有一个连续的序列号叫做offset。Kafka将保留配置时间内的所有消息,所以它也是一个临时存储。在这段时间内,所有的消息都可被消费,并且可以通过改变offset的值进行重复、多次消费。

Offset一般由消费者管理,当然也可以通过程序按需要设置。Offset只有commit以后,才会改变,否则,你将一直获取重复的数据。新的kafka已经将这些Offset的放到了一个专有的主题:__consumer_offsets,就是上图的紫色区域。

值得一提的是,消费者的个数,不要超过分区的个数。否则,多出来的消费者,将接收不到任何数据。


ISR

分布式系统保证数据可靠性的一个常用手段就是增加副本个数,ISR就是建立在这个手段上。

ISR全称"In-Sync Replicas",是保证HA和一致性的重要机制。副本数对Kafka的吞吐率是有一定的影响,但极大的增强了可用性。一般2-3个为宜。

副本有两个要素,一个是数量要够多,一个是不要落在同一个实例上。ISR是针对与Partition的,每个分区都有一个同步列表。N个replicas中,其中一个replica为leader,其他都为follower, leader处理partition的所有读写请求,其他的都是备份。与此同时,follower会被动定期地去复制leader上的数据。

如果一个flower比一个leader落后太多,或者超过一定时间未发起数据复制请求,则leader将其重ISR中移除。

当ISR中所有Replica都向Leader发送ACK时,leader才commit。

Kafka的ISR的管理最终都会反馈到Zookeeper节点上。具体位置为:/brokers/topics/[topic]/partitions/[partition]/state。当Leader节点失效,也会依赖Zk进行新的Leader选举。Offset转移到Kafka内部的Topic以后,KAFKA对ZK的依赖就越来越小了。


可靠性

消息投递语义

At least once

可能会丢消息,但不不会重复

At most once

不不丢消息,但可能重复,所以消费端要做幂等

Exactly once

消息不不会丢,且保证只投递⼀一次

整体的消息投递语义需要Producer端和Consumer端两者来保证。KAFKA默认是At most once,也可以通过配置事务达到Exactly once,但效率很低,不推荐。


ACK

当生产者向leader发送数据时,可以通过request.required.acks参数来设置数据可靠性的级别:

1(默认) 数据发送到Kafka后,经过leader成功接收消息的的确认,就算是发送成功了。在这种情况下,如果leader宕机了,则会丢失数据。

0 生产者将数据发送出去就不管了,不去等待任何返回。这种情况下数据传输效率最高,但是数据可靠性确是最低的。

-1 producer需要等待ISR中的所有follower都确认接收到数据后才算一次发送完成,可靠性最高。

KAFKA为什么快

Cache:Filesystem Cache PageCache缓存

顺序写:由于现代的操作系统提供了预读和写技术,磁盘的顺序写大多数情况下比随机写内存还要快。

Zero-copy:零拷⻉,少了一次内存交换。

Batching of Messages:批量量处理。合并小的请求,然后以流的方式进行交互,直顶网络上限。

Pull 拉模式:使用拉模式进行消息的获取消费,与消费端处理能力相符。


使用场景

1.传递业务消息

2.用户活动日志 • 监控项等

3.日志

4.流处理,比如某些聚合

5.Commit Log,作为某些重要业务的冗余

6.针对当前互联网公司的技术需求以及结合主流技术,我整理了一份系统的架构技术体系,希望对在提升进阶的程序员们有所帮助。大家可以进群Java资源分享群:854601507)下载资料,群里有阿里大牛,也有一线互联网的资深HR,或是关注微信公众号:Java资讯库,免费领取架构资料。

下面是一个日志方面的典型使用场景。

压测

KAFKA自带压测工具,如下:

./kafka-producer-perf-test.sh --topic test001 --num- records 1000000 --record-size 1024 --throughput -1

--producer.config ../config/producer.properties


配置管理

关注点

应用场景:不同的应用场景有不一样的配置策略和不一样的SLA服务水准。需要搞清楚自己的消息是否允许丢失或者重复,然后设定相应的副本数量和ACK模式。

Lag:要时刻注意消息的积压。Lag太高意味着处理能力有问题。如果在低峰时候你的消息有积压,那么当大流量到来,必然会出问题。

扩容:扩容后会涉及到partition的重新分布,你的网络带宽可能会是瓶颈。

磁盘满了:建议设置过期天数,或者设置磁盘最大使用量。

log.retention.bytes

过期删除:磁盘空间是有限的,建议保留最近的记录,其余自动删除。

log.retention.hours   

log.retention.minutes   

log.retention.ms 


监控管理工具

KafkaManager:雅虎出品,可管理多个Kafka集群,是目前功能最全的管理工具。但是注意,当你的Topic太多,监控数据会占用你大量的带宽,造成你的机器负载增高。其监控功能偏弱,不满足需求。

KafkaOffsetMonitor:程序一个jar包的形式运行,部署较为方便。只有监控功能,使用起来也较为安全。

Kafka Web Console:监控功能较为全面,可以预览消息,监控Offset、Lag等信息,不建议在生产环境中使用。

Burrow:是LinkedIn开源的一款专门监控consumer lag的框架。支持报警,只提供HTTP接口,没有webui。

Availability Monitor for Kafka:微软开源的Kafka可用性、延迟性的监控框架,提供JMX接口,用的很少。

Rebalance

消费端Rebalance

消费端的上线下线会造成分区与消费者的关系重新分配,造成Rebalance。业务会发生超时、抖动等。

服务端reassign

服务器扩容、缩容,节点启动、关闭,会造成数据的倾斜,需要对partition进行reassign。在kafka manager后台可以手动触发这个过程,使得分区的分布更加平均。

这个过程会造成集群间大量的数据拷贝,当你的集群数据量大,这个过程会持续数个小时或者几天,谨慎操作。

linkedin开源了其自动化管理工具cruise-control,有自动化运维需求的不妨一看。


结尾

本文是KAFKA相关的最基础的知识,基本涵盖了大部分简单的面试题。

为了达到Exactly once这个语义,KAFKA做了很多努力,努力的结果就是几乎不可用,吞吐量实在是太低了。如果你真要将“高可靠”挂在嘴上,不如做好“补偿策略”。性能不成,最终的结果可能是整体不可用;而数据丢失,仅是极端情况下的一部分小数据而已。你会如何权衡呢?

大流量下的KAFKA是非常吓人的,数据经常将网卡打满。而一旦Broker当机,如果单节点有上T的数据,光启动就需要半个小时,它还要作为Follower去追赶其他Master分区的数据。所以,不要让你的KAFKA集群太大,故障恢复会是一场灾难。启动以后,如果执行reassign,又会是另一番折腾了。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,634评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,951评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,427评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,770评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,835评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,799评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,768评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,544评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,979评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,271评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,427评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,121评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,756评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,375评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,579评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,410评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,315评论 2 352

推荐阅读更多精彩内容

  • 姓名:周小蓬 16019110037 转载自:http://blog.csdn.net/YChenFeng/art...
    aeytifiw阅读 34,721评论 13 425
  • kafka的定义:是一个分布式消息系统,由LinkedIn使用Scala编写,用作LinkedIn的活动流(Act...
    时待吾阅读 5,315评论 1 15
  • Kafka入门经典教程-Kafka-about云开发 http://www.aboutyun.com/threa...
    葡萄喃喃呓语阅读 10,825评论 4 54
  • 文宗元康二年九月,宝林吴氏晋婉仪,打破了北周内命妇,宫女不得越级晋封的规矩和中宫未出,妃妾不得出的祖制。 举国哗然...
    君清兮阅读 192评论 4 1
  • 今天第三节语文课我肚子疼,语文老师今天讲了三个单韵母,我是趴在桌子上听老师讲完的,还把三个单瓶母全部描了一遍。疼得...
    朱秉政阅读 171评论 0 0