图解LeetCode——146. LRU 缓存

一、题目

请你设计并实现一个满足 LRU (最近最少使用) 缓存 约束的数据结构。

实现 LRUCache 类:

  • LRUCache(int capacity)正整数 作为容量 capacity 初始化 LRU 缓存
  • int get(int key) 如果关键字 key 存在于缓存中,则返回关键字的值,否则返回 -1
  • void put(int key, int value) 如果关键字 key 已经存在,则变更其数据值 value ;如果不存在,则向缓存中插入该组 key-value 。如果插入操作导致关键字数量超过 capacity ,则应该 逐出 最久未使用的关键字。

函数 getput 必须以 O(1) 的平均时间复杂度运行。

二、示例

2.1> 示例:

输入
["LRUCache", "put", "put", "get", "put", "get", "put", "get", "get", "get"]
[[2], [1, 1], [2, 2], [1], [3, 3], [2], [4, 4], [1], [3], [4]]
输出
[null, null, null, 1, null, -1, null, -1, 3, 4]
解释
LRUCache lRUCache = new LRUCache(2);
lRUCache.put(1, 1); // 缓存是 {1=1}
lRUCache.put(2, 2); // 缓存是 {1=1, 2=2}
lRUCache.get(1); // 返回 1
lRUCache.put(3, 3); // 该操作会使得关键字 2 作废,缓存是 {1=1, 3=3}
lRUCache.get(2); // 返回 -1 (未找到)
lRUCache.put(4, 4); // 该操作会使得关键字 1 作废,缓存是 {4=4, 3=3}
lRUCache.get(1); // 返回 -1 (未找到)
lRUCache.get(3); // 返回 3
lRUCache.get(4); // 返回 4

提示:

  • 1 <= capacity <= 3000
  • 0 <= key <= 10000
  • 0 <= value <= 10^5
  • 最多调用 2 * 10^5getput

三、解题思路

根据题目描述,我们需要构造一个LRU缓存,那么我们需要解决两个问题:

问题1】实现对keyvalue的数据进行缓存。
问题2】实现LRU的能力,即:最近最少使用。

那么针对第一个问题,我们可以采用哈希表或者数组的方式进行数据存储,因为本题的提示部分已经指出key值是在[0, 10000]区间内的,并不存在负数,所以为了提升执行速度,我们选择数组作为底层的存储结构。其中,需要注意的是,存储的value是下面要介绍的双向链表中的Node节点

那么针对第二个问题,我们可以采用双向链表的方式进行支持,那么为什么是双向链表呢?因为当调用lRUCache.get()lRUCache.set()方法对某个Node进行操作的时候,我们需要将这个Node放到链表的尾部,这样,就需要操作该Node节点的前置节点后置节点,为了便于这种操作,所以我们采用双向链表。执行步骤如下所示:

步骤1】断开PreNodeNode的链接关系;
步骤2】断开NextNodeNode的链接关系;
步骤3】链接PreNodeNextNode
步骤4】将Node放到链表尾部;

那么这里还有一个小细节,就是如果待移动的节点在头节点,那么我们还需要进行特殊的判断(因为头节点没有前置节点PreNode),而同样的,如果待删除的节点是尾节点,那么我们也需要进行特殊的判断(因为尾节点没有后置节点NextNode)。为了统一处理逻辑,我们可以通过创建虚拟的头尾节点来解决这个问题,即:

虚拟头节点】Node head = new Node(-1, -1);
虚拟尾节点】Node tail = new Node(-2, -1);
初始情况下head.next = tail; tail.pre = head;

由于我们可以知道LRU链表容量的,所以当超出这个容量的时候,就将整个链表中,第一个节点删除即可(不包含虚拟收尾节点),并将哈希表/数组中相应key对应的value置为null;以上就是这道题的解题思路,为了便于大家理解,我们通过创建2节点容量的LRU,具体看一下具体的处理过程,请见下图所示:

四、代码实现

class LRUCache {
    Node[] hashTable; // 哈希表
    int capacity = 0, count = 0;
    Node head, tail;
    public LRUCache(int capacity) {
        this.capacity = capacity;
        hashTable = new Node[10001];
        head = new Node(-1, -1); // 虚拟头节点
        tail = new Node(-2, -1); // 虚拟尾节点
        head.next = tail;
        tail.pre = head;
    }

    public int get(int key) {
        Node node;
        if ((node = hashTable[key]) == null) return -1; // 如果不存在,直接返回-1
        moveNode(node); // 将node节点移动到末尾(位置是tail节点的pre节点)
        return node.value;
    }

    public void put(int key, int value) {
        Node node;
        if ((node = hashTable[key]) != null) { // 已存在节点,直接修改value值
            node.value = value;
        } else { // 不存在节点,则新建Node
            if (count < capacity) { // 没有到达容量上限
                count++;
            } else { // 超出容量上限,则需要删除“最近最少使用”的节点
                hashTable[head.next.key] = null;
                delNode(head.next);
            }
            node = new Node(key, value);
            hashTable[key] = node;
        }
        moveNode(node); // 将node节点移动到末尾
    }

    // 删除节点操作
    public void delNode(Node node) {
        if (node.pre == null || node.next == null) return;
        node.pre.next = node.next;
        node.next.pre = node.pre;
    }

    // 将节点移动到“末尾”操作(位置是tail节点的pre节点)
    public void moveNode(Node node) {
        if (tail.pre == node) return; // 如果已经是“末尾”节点,则不操作
        delNode(node); // 删除该节点的前后关联,下面会进行重新关联操作
        tail.pre.next = node;
        node.pre = tail.pre;
        node.next = tail;
        tail.pre = node;
    }

    // 双向链表结构
    class Node {
        public int key, value;
        public Node pre, next;
        public Node(int key, int value) {
            this.key = key;
            this.value = value;
        }
    }
}

今天的文章内容就这些了:

写作不易,笔者几个小时甚至数天完成的一篇文章,只愿换来您几秒钟的 点赞 & 分享

更多技术干货,欢迎大家关注公众号“爪哇缪斯” ~ \(o)/ ~ 「干货分享,每天更新」

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 221,576评论 6 515
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 94,515评论 3 399
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 168,017评论 0 360
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 59,626评论 1 296
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,625评论 6 397
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 52,255评论 1 308
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,825评论 3 421
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,729评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 46,271评论 1 320
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,363评论 3 340
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,498评论 1 352
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 36,183评论 5 350
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,867评论 3 333
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,338评论 0 24
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,458评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,906评论 3 376
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,507评论 2 359

推荐阅读更多精彩内容