streamlit搭建ML前端demo

0 引入

很多算法工程师在完成数据分析、模型训练或者项目总结的时候,往往只能通过ppt汇报,添加数据图表、截图模型实验结果等。如果想提供一个前端演示demo,通常可以搭建flask服务,但是flask需要学习很多前端知识,如css、html等,这又是一个深之又深的坑。那有没有什么工具能够跳过这些模块,直接提供一个可用的前端页面呢?答案是肯定的,今天给大家推荐一个轻量化、简单好用、快速上手的streamlit。

1 streamlit

1.1 什么是streamlit?

streamlit 是2019年开源的python库,在GitHub上已经超过了17k的stars了。AI算法工程师利用streamlit可以快速构建机器学习应用和高级数据分析可视化的用户界面。更多内容和介绍可以参考streamlit的官方帮助文档

1.2 快速上手

pip安装

pip install streamlit

安装好以后,执行如下命令,可以运行内置演示界面hello

streamlit hello

如果你想停止运行,可以随时在命令行里使用Ctrl+C终止应用。

然后可以创建自己的python脚本app.py

import streamlit as st
st.title("Streamlit Demo")
st.write("Hello Word!")

在python脚本的目录下,在终端中启动服务。

streamlit run app.py

执行后会在8501端口启动服务,如果启动成功则显示如下URL。


启动截图

本地浏览器打开该URL,则为刚刚创建的前端页面


前端页面

1.3复杂功能

1.3.1支持markdown语法

可以把平时写markdown的习惯保留下来,用到前端页面排版上去。

st.markdown("""
## 代码片段
import streamlit as st
import pandas as pd
import numpy as np
data = pd.DataFrame(np.random.randn(20,3), columns=['line1', 'line2', 'line3'])
st.line_chart(data)
""")

前端输出结果:

markdown示例

1.3.2 数据展示

import streamlit as st
import pandas as pd
import numpy as np
data = pd.DataFrame(np.random.randn(20,3), columns=['line1', 'line2', 'line3'])
st.write(data.head(10))

前端输出结果:

表格示例图

1.3.3 自带画图

import streamlit as st
import pandas as pd
import numpy as np
data = pd.DataFrame(np.random.randn(20,3), columns=['line1', 'line2', 'line3'])
st.line_chart(data)

前端输出结果:

画图示例

streamlit支持的所有图类型如下:

  • 折线图 line_chart
  • 条形图 bar_chart
  • 面积图 area_chart

1.3.4 Matplotlib

matplotlib大家应该不陌生,这是python常用的画图工具。streamlit也支持该画图结果的展示。

import streamlit as st
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
data = pd.DataFrame(np.random.randn(20,3), columns=['line1', 'line2', 'line3'])

st.title("matplotlib")
st.subheader("histogram")
fig_mp, ax_mpl = plt.subplots()
ax_mp = plt.hist(data)
plt.xlabel("x")
plt.ylabel("y")
st.pyplot(fig_mp)

前端输出结果:

matplotlib示意图

1.3.5 Plotly

import streamlit as st
import numpy as np
import pandas as pd
data = pd.DataFrame(np.random.randn(20,3), columns=['line1', 'line2', 'line3'])
import plotly.express as px

st.title("plotly")
st.subheader("histogram")
fig = px.histogram(data)
st.plotly_chart(fig)

前端输出结果:

plotly示意图

2 总结

本文主要介绍了一种适合AI工程师们开箱即用的开源前端展示工具——streamlit。介绍了streamlit的安装、运行和几种图表。

3 参考文献

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,456评论 5 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,370评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,337评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,583评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,596评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,572评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,936评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,595评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,850评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,601评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,685评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,371评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,951评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,934评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,167评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,636评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,411评论 2 342

推荐阅读更多精彩内容