Importance Sampling with Unequal Support

Philip S. Thomas and Emma Brunskill
Carnegie Mellon University

Importance sampling is often used in machine learning when training and testing data come from different distributions.

In this paper we propose a new variant of importance sampling that can reduce the variance of importance sampling-based estimates by orders of magnitude when the supports of the training and testing distributions differ.

After motivating and presenting our new importance sampling estimator, we provide a detailed theoretical analysis that characterizes both its bias and variance relative to the ordinary importance sampling estimator (in various settings, which include cases where ordinary importance sampling is biased, while our new estimator is not, and vice versa).

We conclude with an example of how our new importance sampling estimator can be used to improve estimates of how well a new treatment policy for diabetes will work for an individual, using only data from when the individual used a previous treatment policy

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
【社区内容提示】社区部分内容疑似由AI辅助生成,浏览时请结合常识与多方信息审慎甄别。
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容

  • 第 6 章 校花的邀请(上) “喂,李落”安悦儿戳着...
    毁心阅读 1,625评论 0 2
  • 数学作业: 每人买3个造句本,从第三单元开始要写数字。如图所示:
    lyshensir阅读 2,688评论 0 0
  • 一些我想说的话 我不知道别人怎么想我,老鹰既不帅又不多金,我又不多懂吉他民谣,到底是怎样吸引我了。一开始啊我也想不...
    青柚_阅读 1,270评论 0 0

友情链接更多精彩内容