章节5_多变量线性回归_《吴恩达机器学习》学习笔记


章节5

原文链接

另一篇

https://www.coursera.org/learn/machine-learning/home/welcome

多变量线性回归主要包括以下部分:

1) Multiple features(多维特征)

2) Gradient descent for multiple variables(梯度下降在多变量线性回归中的应用)

3) Gradient descent in practice I: Feature Scaling(梯度下降实践1:特征归一化)

4) Gradient descent in practice II: Learning rate(梯度下降实践2:步长的选择)

5) Features and polynomial regression(特征及多项式回归)

6) Normal equation(正规方程-区别于迭代方法的直接解法)

7) Normal equation and non-invertibility (optional)(正规方程在矩阵不可逆情况下的解决方法)


1) Multiple features(多维特征)

第一课中我们谈到的是单变量的情况,单个特征的训练样本,单个特征的表达式,总结起来如下图所示:








对于多维特征或多个变量而言:以房价预测为例,特征除了“房屋大小外”,还可以增加“房间数、楼层数、房龄”等特征,如下所示:




定义:

n = 特征数目

x(i)= 第i个训练样本的所有输入特征,可以认为是一组特征向量

x(i)j= 第i个训练样本第j个特征的值,可以认为是特征向量中的第j个值





对于Hypothesis,不再是单个变量线性回归时的公式:hθ(x)=θ0+θ1x。

为了方便,记x0 = 1,则多变量线性回归可以记为:hθ(x)=θTx,其中θ和x都是向量。


2) Gradient descent for multiple variables(梯度下降在多变量线性回归中的应用)

梯度下降算法如下:

对J(θ)求导,分别对应的单变量和多变量梯度下降算法如下:

下图表示当特征数目为1,也就是n=1时。

当特征数目大于1也就是n>1时,梯度下降算法如下:

 3) Gradient descent in practice I: Feature Scaling(梯度下降实践1:特征归一化)

核心思想:确保特征在相似的尺度里。

包含两种方式:

a. 简单的归一化

b. Mean Normalization(均值归一化):


例如房价问题:

特征1:房屋的大小(0-2000);特征2:房间数目(1-5);

a. 简单的归一化

除以每组特征的最大值

目标:使每一个特征值都近似的落在−1≤xi≤1的范围内。

举例:因为是近似落在这个范围内,所以只要接近的范围基本上都可以接受,例如:

0<=x1<=3, -2<=x2<=0.5, -3 to 3, -1/3 to 1/3 都ok;

但是:-100 to 100, -0.0001 to 0.0001不Ok。






b. Mean Normalization(均值归一化):

用xi–μi替换xi使特征的均值近似为0(但是不对x0=1处理),均值归一化的公式是:xi=(xi–μi)/Si


其中μi是特征的平均值,Si可以是特征的取值范围(最大值-最小值),也可以是标准差(standard deviation).

对于房价问题中的两个特征,均值归一化的过程如下:


4) Gradient descent in practice II: Learning rate(梯度下降实践2:步长的选择)

对于梯度下降算法:

需要注意两点:

-“调试”:如何确保梯度下降算法正确的执行;

-如何选择正确的步长(learning rate):α;

第二点很重要,它也是确保梯度下降收敛的关键点。要确保梯度下降算法正确运行,需要保证J(θ)在每一步迭代中都减小,如果某一步减少的值少于某个很小的值ϵ, 则其收敛。例如:

如果梯度下降算法不能正常运行,考虑使用更小的步长α,这里需要注意两点:

1)对于足够小的α,J(θ)能保证在每一步都减小;

2)但是如果α太小,梯度下降算法收敛的会很慢;

总结:

1)如果α太小,就会收敛很慢;

2)如果α太大,就不能保证每一次迭代J(θ)都减小,也就不能保证J(θ)收敛;

如何选择α-经验的方法:

…, 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1…

约3倍于前一个数。

5) Features and polynomial regression(特征及多项式回归)

例子-房价预测问题:

特征x1表示frontage(正面的宽度),特征x2表示depth(深度)

同时x1,x2也可以用一个特征表示:面积 Area = frontage * depth

即hθ(x)=θ0+θ1x, x表示面积。

多项式回归:

很多时候,线性回归不能很好的拟合给定的样本点,例如:

所以我们选择多项式回归:

对于特征的选择,除了n次方外,也可以开根号,事实上也是1/2次方:

6) Normal equation(正规方程-区别于迭代方法的直接解法)

相对于梯度下降方法,Normal Equation是用分析的方法直接解决θ.

正规方程的背景:

在微积分里,对于1维的情况,如果θ属于R:


J(θ)=aθ2+bθ+c


求其最小值的方法是令:


ddθJ(θ)=…=0


然后得到θ.


同理,在多变量线性回归中,对于θ∈Rn+1,Cost Function是:

求取θ的思路仍然是:

对于有4组特征(m=4)的房价预测问题:

其中X 是m * (n+1)矩阵:

y是m维向量:

则Normal equation的公式为:


θ=(XTX)−1XTy


注:这里直接给出了正规方程的公式,没有给出为什么是这样的,如果想知道原因,建议看看MIT线性代数第4章4.3节“最小二乘法”的相关内容,这里面最关键的一个点是:

“The partial derivatives of||Ax–b||2are zero whenATAx=ATb.


举例可见官方的PPT,此处略;

Octave公式非常简洁:pinv(X’ * X) * X’ * y

对于m个样本,n个特征的问题,以下是梯度下降和正规方程的优缺点:

梯度下降:

需要选择合适的learning rateα;

需要很多轮迭代;

但是即使n很大的时候效果也很好;

Normal Equation:

不需要选择α;

不需要迭代,一次搞定;

但是需要计算(XTX)−1,其时间复杂度是O(n3)

如果n很大,就非常慢


7) Normal equation and non-invertibility (optional)(正规方程在矩阵不可逆情况下的解决方法)

对于Normal Equation,如果XTX不可逆怎么办?

1) 去掉冗余的特征(线性相关):

例如以平方英尺为单位的面积x1,  和以平方米为单位的面积x2,其是线性相关的:

x1=(3.28)2x2

2) 过多的特征,例如m <= n:

删掉一些特征,或者使用regularization–之后的课程会专门介绍。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,444评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,421评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,036评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,363评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,460评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,502评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,511评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,280评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,736评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,014评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,190评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,848评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,531评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,159评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,411评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,067评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,078评论 2 352

推荐阅读更多精彩内容