2022-01-13

姓名 刘锦辉 学号 21011210175 学院 通信工程学院

转载自https://www.jianshu.com/p/c66cb61388db

【嵌牛导读】了解哈希算法的历史、应用和基本思想,清楚如何用哈希算法解决实际问题。

【嵌牛鼻子】哈希算法

【嵌牛提问】在实际的开发中,我们应该如何用哈希算法解决问题。

【嵌牛正文】

什么是哈希算法?

实际上,不管是“散列”还是“哈希”,这都是中文翻译的差别,英文其实就是“Hash”。所以,我们常听到有人把“散列表”叫作“哈希表”“Hash 表”,把“哈希算法”叫作“Hash 算法”或者“散列算法”。那到底什么是哈希算法呢?哈希算法的定义和原理非常简单,基本上一句话就可以概括了。将任意长度的二进制值串映射为固定长度的二进制值串,这个映射的规则就是哈希算法,而通过原始数据映射之后得到的二进制值串就是哈希值。但是,要想设计一个优秀的哈希算法并不容易,需要满足的几点要求:

1.从哈希值不能反向推导出原始数据(所以哈希算法也叫单向哈希算法);

2.对输入数据非常敏感,哪怕原始数据只修改了一个 Bit,最后得到的哈希值也大不相同;

3.散列冲突的概率要很小,对于不同的原始数据,哈希值相同的概率非常小;

4.哈希算法的执行效率要尽量高效,针对较长的文本,也能快速地计算出哈希值。

这些定义和要求都比较理论,拿 MD5 这种哈希算法来具体说明一下。我们分别对“今天我来讲哈希算法”和“jiajia”这两个文本,计算 MD5 哈希值,得到两串看起来毫无规律的字符串(MD5 的哈希值是 128 位的 Bit 长度,为了方便表示,我把它们转化成了 16 进制编码)。可以看出来,无论要哈希的文本有多长、多短,通过 MD5 哈希之后,得到的哈希值的长度都是相同的,而且得到的哈希值看起来像一堆随机数,完全没有规律。


我们再来看两个非常相似的文本,“我今天讲哈希算法!”和“我今天讲哈希算法”。这两个文本只有一个感叹号的区别。如果用 MD5 哈希算法分别计算它们的哈希值,你会发现,尽管只有一字之差,得到的哈希值也是完全不同的。


通过哈希算法得到的哈希值,很难反向推导出原始数据。比如上面的例子中,我们就很难通过哈希值“a1fb91ac128e6aa37fe42c663971ac3d”反推出对应的文本“我今天讲哈希算法”。哈希算法要处理的文本可能是各种各样的。比如,对于非常长的文本,如果哈希算法的计算时间很长,那就只能停留在理论研究的层面,很难应用到实际的软件开发中。比如,我们把今天这篇包含 4000 多个汉字的文章,用 MD5 计算哈希值,用不了 1ms 的时间。哈希算法的应用非常非常多,最常见的七个,分别是安全加密、唯一标识、数据校验、散列函数、负载均衡、数据分片、分布式存储。

应用一:安全加密

说到哈希算法的应用,最先想到的应该就是安全加密。最常用于加密的哈希算法是 MD5(MD5 Message-Digest Algorithm,MD5 消息摘要算法)和 SHA(Secure Hash Algorithm,安全散列算法)。除了这两个之外,当然还有很多其他加密算法,比如 DES(Data Encryption Standard,数据加密标准)、AES(Advanced Encryption Standard,高级加密标准)。前面讲到的哈希算法四点要求,对用于加密的哈希算法来说,有两点格外重要。第一点是很难根据哈希值反向推导出原始数据,第二点是散列冲突的概率要很小。第一点很好理解,加密的目的就是防止原始数据泄露,所以很难通过哈希值反向推导原始数据,这是一个最基本的要求。所以我着重讲一下第二点。实际上,不管是什么哈希算法,我们只能尽量减少碰撞冲突的概率,理论上是没办法做到完全不冲突的。为什么这么说呢?这里就基于组合数学中一个非常基础的理论,鸽巢原理(也叫抽屉原理)。这个原理本身很简单,它是说,如果有 10 个鸽巢,有 11 只鸽子,那肯定有 1 个鸽巢中的鸽子数量多于 1 个,换句话说就是,肯定有 2 只鸽子在 1 个鸽巢内。有了鸽巢原理的铺垫之后,我们再来看,为什么哈希算法无法做到零冲突?我们知道,哈希算法产生的哈希值的长度是固定且有限的。比如前面举的 MD5 的例子,哈希值是固定的 128 位二进制串,能表示的数据是有限的,最多能表示 2^128 个数据,而我们要哈希的数据是无穷的。基于鸽巢原理,如果我们对 2^128+1 个数据求哈希值,就必然会存在哈希值相同的情况。这里你应该能想到,一般情况下,哈希值越长的哈希算法,散列冲突的概率越低。


比如下面两串字符串经过MD5加密之后产生的HASH值就是一样的


不过,即便哈希算法存在散列冲突的情况,但是因为哈希值的范围很大,冲突的概率极低,所以相对来说还是很难破解的。像 MD5,有 2^128 个不同的哈希值,这个数据已经是一个天文数字了,所以散列冲突的概率要小于 1/2^128。如果我们拿到一个 MD5 哈希值,希望通过毫无规律的穷举的方法,找到跟这个 MD5 值相同的另一个数据,那耗费的时间应该是个天文数字。所以,即便哈希算法存在冲突,但是在有限的时间和资源下,哈希算法还是很难被破解的。除此之外,没有绝对安全的加密。越复杂、越难破解的加密算法,需要的计算时间也越长。比如 SHA-256 比 SHA-1 要更复杂、更安全,相应的计算时间就会比较长。密码学界也一直致力于找到一种快速并且很难被破解的哈希算法。我们在实际的开发过程中,也需要权衡破解难度和计算时间,来决定究竟使用哪种加密算法。


应用二:唯一标识

如果要在海量的图库中,搜索一张图是否存在,我们不能单纯地用图片的元信息(比如图片名称)来比对,因为有可能存在名称相同但图片内容不同,或者名称不同图片内容相同的情况。那我们该如何搜索呢?我们知道,任何文件在计算中都可以表示成二进制码串,所以,比较笨的办法就是,拿要查找的图片的二进制码串与图库中所有图片的二进制码串一一比对。如果相同,则说明图片在图库中存在。但是,每个图片小则几十 KB、大则几 MB,转化成二进制是一个非常长的串,比对起来非常耗时。有没有比较快的方法呢?我们可以给每一个图片取一个唯一标识,或者说信息摘要。比如,我们可以从图片的二进制码串开头取 100 个字节,从中间取 100 个字节,从最后再取 100 个字节,然后将这 300 个字节放到一块,通过哈希算法(比如 MD5),得到一个哈希字符串,用它作为图片的唯一标识。通过这个唯一标识来判定图片是否在图库中,这样就可以减少很多工作量。如果还想继续提高效率,我们可以把每个图片的唯一标识,和相应的图片文件在图库中的路径信息,都存储在散列表中。当要查看某个图片是不是在图库中的时候,我们先通过哈希算法对这个图片取唯一标识,然后在散列表中查找是否存在这个唯一标识。如果不存在,那就说明这个图片不在图库中;如果存在,我们再通过散列表中存储的文件路径,获取到这个已经存在的图片,跟现在要插入的图片做全量的比对,看是否完全一样。如果一样,就说明已经存在;如果不一样,说明两张图片尽管唯一标识相同,但是并不是相同的图片。


应用三:数据校验

电驴这样的 BT 下载软件你肯定用过的。我们知道,BT下载的原理是基于 P2P 协议的。我们从多个机器上并行下载一个 2GB 的电影,这个电影文件可能会被分割成很多文件块(比如可以分成 100 块,每块大约 20MB)。等所有的文件块都下载完成之后,再组装成一个完整的电影文件就行了。我们知道,网络传输是不安全的,下载的文件块有可能是被宿主机器恶意修改过的,又或者下载过程中出现了错误,所以下载的文件块可能不是完整的。如果我们没有能力检测这种恶意修改或者文件下载出错,就会导致最终合并后的电影无法观看,甚至导致电脑中毒。现在的问题是,如何来校验文件块的安全、正确、完整呢?具体的 BT 协议很复杂,校验方法也有很多,我来说其中的一种思路。我们通过哈希算法,对 100 个文件块分别取哈希值,并且保存在种子文件中。我们在前面讲过,哈希算法有一个特点,对数据很敏感。只要文件块的内容有一丁点儿的改变,最后计算出的哈希值就会完全不同。所以,当文件块下载完成之后,我们可以通过相同的哈希算法,对下载好的文件块逐一求哈希值,然后跟种子文件中保存的哈希值比对。如果不同,说明这个文件块不完整或者被篡改了,需要再重新从其他宿主机器上下载这个文件块。

应用四:散列函数

实际上,散列函数也是哈希算法的一种应用。散列函数是设计一个散列表的关键。它直接决定了散列冲突的概率和散列表的性能。不过,相对哈希算法的其他应用,散列函数对于散列算法冲突的要求要低很多。即便出现个别散列冲突,只要不是过于严重,我们都可以通过开放寻址法或者链表法解决。不仅如此,散列函数对于散列算法计算得到的值,是否能反向解密也并不关心。散列函数中用到的散列算法,更加关注散列后的值是否能平均分布,也就是,一组数据是否能均匀地散列在各个槽中。除此之外,散列函数执行的快慢,也会影响散列表的性能,所以,散列函数用的散列算法一般都比较简单,比较追求效率。


应用五:负载均衡

我们知道,负载均衡算法有很多,比如轮询、随机、加权轮询等。那如何才能实现一个会话粘滞(session sticky)的负载均衡算法呢?也就是说,我们需要在同一个客户端上,在一次会话中的所有请求都路由到同一个服务器上。最直接的方法就是,维护一张映射关系表,这张表的内容是客户端 IP 地址或者会话 ID 与服务器编号的映射关系。客户端发出的每次请求,都要先在映射表中查找应该路由到的服务器编号,然后再请求编号对应的服务器。这种方法简单直观,但也有几个弊端:


1.如果客户端很多,映射表可能会很大,比较浪费内存空间;

2.客户端下线、上线,服务器扩容、缩容都会导致映射失效,这样维护映射表的成本就会很大;

如果借助哈希算法,这些问题都可以非常完美地解决。我们可以通过哈希算法,对客户端 IP 地址或者会话 ID 计算哈希值,将取得的哈希值与服务器列表的大小进行取模运算,最终得到的值就是应该被路由到的服务器编号。 这样,我们就可以把同一个 IP 过来的所有请求,都路由到同一个后端服务器上。

应用六:数据分片

哈希算法还可以用于数据的分片。我这里有两个例子。

1.如何统计“搜索关键词”出现的次数?

假如我们有 1T 的日志文件,这里面记录了用户的搜索关键词,我们想要快速统计出每个关键词被搜索的次数,该怎么做呢?我们来分析一下。这个问题有两个难点,第一个是搜索日志很大,没办法放到一台机器的内存中。第二个难点是,如果只用一台机器来处理这么巨大的数据,处理时间会很长。针对这两个难点,我们可以先对数据进行分片,然后采用多台机器处理的方法,来提高处理速度。具体的思路是这样的:为了提高处理的速度,我们用 n 台机器并行处理。我们从搜索记录的日志文件中,依次读出每个搜索关键词,并且通过哈希函数计算哈希值,然后再跟 n 取模,最终得到的值,就是应该被分配到的机器编号。这样,哈希值相同的搜索关键词就被分配到了同一个机器上。也就是说,同一个搜索关键词会被分配到同一个机器上。每个机器会分别计算关键词出现的次数,最后合并起来就是最终的结果。实际上,这里的处理过程也是 MapReduce 的基本设计思想。

2.如何快速判断图片是否在图库中?

如何快速判断图片是否在图库中?假设现在我们的图库中有 1 亿张图片,很显然,在单台机器上构建散列表是行不通的。因为单台机器的内存有限,而 1 亿张图片构建散列表显然远远超过了单台机器的内存上限。

我们同样可以对数据进行分片,然后采用多机处理。我们准备 n 台机器,让每台机器只维护某一部分图片对应的散列表。我们每次从图库中读取一个图片,计算唯一标识,然后与机器个数 n 求余取模,得到的值就对应要分配的机器编号,然后将这个图片的唯一标识和图片路径发往对应的机器构建散列表。

当我们要判断一个图片是否在图库中的时候,我们通过同样的哈希算法,计算这个图片的唯一标识,然后与机器个数 n 求余取模。假设得到的值是 k,那就去编号 k 的机器构建的散列表中查找。

现在,我们来估算一下,给这 1 亿张图片构建散列表大约需要多少台机器。

散列表中每个数据单元包含两个信息,哈希值和图片文件的路径。假设我们通过 MD5 来计算哈希值,那长度就是 128 比特,也就是 16 字节。文件路径长度的上限是 256 字节,我们可以假设平均长度是 128 字节。如果我们用链表法来解决冲突,那还需要存储指针,指针只占用 8 字节。所以,散列表中每个数据单元就占用 152 字节(这里只是估算,并不准确)。

假设一台机器的内存大小为 2GB,散列表的装载因子为 0.75,那一台机器可以给大约 1000 万(2GB*0.75/152)张图片构建散列表。所以,如果要对 1 亿张图片构建索引,需要大约十几台机器。在工程中,这种估算还是很重要的,能让我们事先对需要投入的资源、资金有个大概的了解,能更好地评估解决方案的可行性。

实际上,针对这种海量数据的处理问题,我们都可以采用多机分布式处理。借助这种分片的思路,可以突破单机内存、CPU 等资源的限制。

应用七:分布式存储

现在互联网面对的都是海量的数据、海量的用户。我们为了提高数据的读取、写入能力,一般都采用分布式的方式来存储数据,比如分布式缓存。

我们有海量的数据需要缓存,所以一个缓存机器肯定是不够的。于是,我们就需要将数据分布在多台机器上。

该如何决定将哪个数据放到哪个机器上呢?我们可以借用前面数据分片的思想,即通过哈希算法对数据取哈希值,然后对机器个数取模,这个最终值就是应该存储的缓存机器编号。但是,如果数据增多,原来的 10 个机器已经无法承受了,我们就需要扩容了,比如扩到 11 个机器,这时候麻烦就来了。因为,这里并不是简单地加个机器就可以了。原来的数据是通过与 10 来取模的。比如 13 这个数据,存储在编号为 3 这台机器上。但是新加了一台机器中,我们对数据按照 11 取模,原来 13 这个数据就被分配到 2 号这台机器上了。

因此,所有的数据都要重新计算哈希值,然后重新搬移到正确的机器上。这样就相当于,缓存中的数据一下子就都失效了。所有的数据请求都会穿透缓存,直接去请求数据库。这样就可能发生雪崩效应,压垮数据库。

所以,我们需要一种方法,使得在新加入一个机器后,并不需要做大量的数据搬移。这时候,一致性哈希算法就要登场了。假设我们有 k 个机器,数据的哈希值的范围是[0, MAX]。我们将整个范围划分成 m 个小区间(m 远大于 k),每个机器负责 m/k 个小区间。当有新机器加入的时候,我们就将某几个小区间的数据,从原来的机器中搬移到新的机器中。这样,既不用全部重新哈希、搬移数据,也保持了各个机器上数据数量的均衡。一致性哈希算法的基本思想就是这么简单。除此之外,它还会借助一个虚拟的环和虚拟结点,更加优美地实现出来。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,717评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,501评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,311评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,417评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,500评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,538评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,557评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,310评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,759评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,065评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,233评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,909评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,548评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,172评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,420评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,103评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,098评论 2 352

推荐阅读更多精彩内容

  • 如何正确看待物欲之我的想法 梳理一下经济学的历史,大概整理几个18,19世纪影响世界最大,最著名的几个经济学家的思...
    rabbiteyesmove阅读 333评论 0 0
  • 目标 1月底刷完「三周攻克数据结构」。 具体题目链接如下:https://leetcode-cn.com/stud...
    柠香萌萌鸡阅读 94评论 0 0
  • 魏晋南北朝的那些文人们之: 嵇康与千古绝唱《广陵散》(上) 写到嵇康,我有点犹豫,也有点胆怯,迟迟不想动笔。在魏晋...
    无限遥远的远方阅读 395评论 0 0
  • 二十一世纪旧体诗词风骚榜[https://www.jianshu.com/c/da968ae2d498] 上榜絮语...
    张成昱阅读 211评论 2 22
  • 谁来拯救成年人的世界 世上最遥远的事,大概就是在成年人的世界里找纯粹,找着找着,你的心就凉啦,找着找着人性的另一面...
    梦中人温暖了谁的时光阅读 226评论 0 0