最小二乘法

最近在看线性回归,一步步往下追,追到了最小二乘法公式

最小二乘法公式是一个数学的公式,在数学上称为曲线拟合,此处所讲最小二乘法,专指线性回归方程最小二乘法公式为b=y(平均)-a*x(平均)。

最小二乘

找到一个(组)估计值,使得实际值与估计值的距离最小。本来用两者差的绝对值汇总并使之最小是最理想的,但绝对值在数学上求最小值比较麻烦,因而替代做法是,找一个(组)估计值,使得实际值与估计值之差的平方加总之后的值最小,称为最小二乘。“二乘”的英文为least square,其实英文的字面意思是“平方最小”。这时,将这个差的平方的和式对参数求导数,并取一阶导数为零,就是OLSE。

最小二乘法的核心是权衡,因为你要在很多条线中间选择,选择出距离所有的点之和最短的;

换一种方式描述最小二乘法:

(1)已知多条近似交汇于同一个点的直线,想求解出一个近似交点:寻找到一个距离所有直线距离平方和最小的点,该点即最小二乘解;

(2)已知多个近似分布于同一直线上的点,想拟合出一个直线方程:设该直线方程为y=kx+b,调整参数k和b,使得所有点到该直线的距离平方之和最小,设此时满足要求的k=k0,b=b0,则直线方程为y=k0x+b0。

举个最简单的例子理解最小二乘

假设身高是变量X,体重是变量Y,我们都知道身高与体重有比较直接的关系。生活经验告诉我们:一般身高比较高的人,体重也会比较大。但是这只是我们直观的感受,只是很粗略的定性的分析。在数学世界里,我们大部分时候需要进行严格的定量计算:能不能根据一个人的身高,通过一个式子就能计算出他或者她的标准体重?

接下来,我们会找一些人进行采样,我们会得到一堆数据(x1,y1),(x2,y2),⋯,(xn,yn),其中x是身高,y是体重。

得到这堆数据以后,接下来肯定是要处理这堆数据了。生活常识告诉我们:身高与体重是一个近似的线性关系,用最简单的数学语言来描述就是y=β0+β1x。于是,接下来的任务就变成了:怎么根据我们现在得到的采样数据,求出这个β0与β1呢?这个时候,就轮到最小二乘法发飙显示威力了。

最小二乘的cost function

在讲最小二乘的详情之前,首先明确两点:1.我们假设在测量系统中不存在有系统误差,只存在有纯偶然误差。比如体重计或者身高计本身有问题,测量出来的数据都偏大或者都偏小,这种误差是绝对不存在的。(或者说这不能叫误差,这叫错误)2.误差是符合正态分布的,因此最后误差的均值为0(这一点很重要)

最小二乘法的求解

根据样本的回归模型很容易得出:

我擦....

用到了求导,到此为止,打住....

作者:刘敬

链接:https://www.jianshu.com/p/4f5ba63ae291

來源:简书

简书著作权归作者所有,任何形式的转载都请联系作者获得授权并注明出处。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,732评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,496评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,264评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,807评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,806评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,675评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,029评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,683评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 41,704评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,666评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,773评论 1 332
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,413评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,016评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,978评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,204评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,083评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,503评论 2 343

推荐阅读更多精彩内容