Python学习(1):nn.init 参数初始化方法

Pytorch nn.init 参数初始化方法

import torch

import torch.nn as nn

w = torch.empty(2, 3)

# 1. 均匀分布 - u(a, b)

# torch.nn.init.uniform_(tensor, a=0, b=1)

nn.init.uniform_(w)

# tensor([[ 0.0578,  0.3402,  0.5034],

#        [ 0.7865,  0.7280,  0.6269]])

# 2. 正态分布 - N(mean, std)

# torch.nn.init.normal_(tensor, mean=0, std=1)

nn.init.normal_(w)

# tensor([[ 0.3326,  0.0171, -0.6745],

#        [ 0.1669,  0.1747,  0.0472]])

# 3. 常数 - 固定值 val

# torch.nn.init.constant_(tensor, val)

nn.init.constant_(w, 0.3)

# tensor([[ 0.3000,  0.3000,  0.3000],

#        [ 0.3000,  0.3000,  0.3000]])

#4. 对角线为1, 其它为0

# torch.nn.init.eye_(tensor)

nn.init.eye_(w)

# tensor([[ 1.,  0.,  0.],

#        [ 0.,  1.,  0.]])

# 5. Dirac delta 函数初始化,仅适用于 {3, 4, 5}-维的 torch.Tensor

# torch.nn.init.dirac_(tensor)

w1 = torch.empty(3, 16, 5, 5)

nn.init.dirac_(w1)

# 6. xavier_uniform 初始化

# torch.nn.init.xavier_uniform_(tensor, gain=1)

# From - Understanding the difficulty of training deep feedforward neural networks - Bengio 2010

nn.init.xavier_uniform_(w, gain=nn.init.calculate_gain('relu'))

# tensor([[ 1.3374,  0.7932, -0.0891],

#        [-1.3363, -0.0206, -0.9346]])

# 7. xavier_normal 初始化

# torch.nn.init.xavier_normal_(tensor, gain=1)

nn.init.xavier_normal_(w)

# tensor([[-0.1777,  0.6740,  0.1139],

#        [ 0.3018, -0.2443,  0.6824]])

# 8. kaiming_uniform 初始化

# From - Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification - He Kaiming 2015

# torch.nn.init.kaiming_uniform_(tensor, a=0, mode='fan_in', nonlinearity='leaky_relu')

nn.init.kaiming_uniform_(w, mode='fan_in', nonlinearity='relu')

# tensor([[ 0.6426, -0.9582, -1.1783],

#        [-0.0515, -0.4975,  1.3237]])

# 9. kaiming_normal 初始化

# torch.nn.init.kaiming_normal_(tensor, a=0, mode='fan_in', nonlinearity='leaky_relu')

nn.init.kaiming_normal_(w, mode='fan_out', nonlinearity='relu')

# tensor([[ 0.2530, -0.4382,  1.5995],

#        [ 0.0544,  1.6392, -2.0752]])

# 10. 正交矩阵 - (semi)orthogonal matrix

# From - Exact solutions to the nonlinear dynamics of learning in deep linear neural networks - Saxe 2013

# torch.nn.init.orthogonal_(tensor, gain=1)

nn.init.orthogonal_(w)

# tensor([[ 0.5786, -0.5642, -0.5890],

#        [-0.7517, -0.0886, -0.6536]])

# 11. 稀疏矩阵 - sparse matrix

# 非零元素采用正态分布 N(0, 0.01) 初始化.

# From - Deep learning via Hessian-free optimization - Martens 2010

# torch.nn.init.sparse_(tensor, sparsity, std=0.01)

nn.init.sparse_(w, sparsity=0.1)

# tensor(1.00000e-03 *

#        [[-0.3382,  1.9501, -1.7761],

#        [ 0.0000,  0.0000,  0.0000]])

©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容