[kaggle]DC比赛进程4

本次提交的个人观点:

  1. 对GIS的依赖程度 ,是否要接入postgresql进行GIS方面的计算(之前有一点点研究,并不深入);
  1. 关键的特征应该是trajectories轨迹方面的特征。在初期可以采用类似张洋在翻译中提到的geohash的方法(没找到和R相关的,倒是有个python包,谁帮忙研究下):类似的思想就是将地图切分成大量的小方块(高级一点会切成六边形,小方块的案例有:Uber和神州专车,没找到技术链接将地图切块,进行用车预测,从而动态调价;六边形的好像是高德,做地图上某个六边形区域点击,可以看到半小时、一小时、两小时的到达区域范围)切成块之后进行编码,这样可以将任意一条行程转化成为轨迹覆盖区域编码的序列,或者整个编码区域的稀疏矩阵。再简单点,之间使用起止点的编码作为特征进行预测也是可以接受的。
  2. 在上一步的基础上,可以进行一些OD方面提取特征,baidu出租车OD分析baidu出租车运营平台

一些还未想好是否能合理使用的点:

  • 是否应该将行程切分,区分载客和/空车的行程(需要进行验证),在后期用来训练的数据是根据某个特征(载客/空车)切分的行程,还是整个行程中的每两个点之间的行程都作为训练数据?
    比如说一段行程在经过geohash标号后, A →B→C→C→D→E,到达每个标号的时间知道;
    训练的输入会是其中任意一个子集么,如A →B; A →B→C
  • (这条肯定用)高德的API,企业用户,具体可能会发生关联的如:路径规划API;基于API的相关属性构建特征值;
  • 驾驶员驾驶行为属性(由于数据间隔30s,所以很难学习到驾驶员的驾驶行为倾向)
  • 用户画像方面:驾驶员的生活习惯,貌似也没什么建模必要;
  • H2O的使用;

以下是我的方案:

  1. 在将原始数据计算平均车速度后,验证一些典型的特征验证:
  • 城市不同时段的车流量;
  • 不同日期的车流量变化(节假日/非节假日,需要考察程度在该段时间内会影响OD的重大事件)
  • 每个人的平均速度是否有不同(个人驾驶倾向)
  • 载客与非载客对时间的影响,理论上taxi在乘客上车后,应该直接确定目的地,并且不会在中间因为非交通原因等待。
  • 出驻车的换班时段是否固定,如不固定是否有必要作为特征
  1. 对于轨迹的信息提取,倾向于使用geohash的方法,编码地图上的每一个小块。(能想到的另一种方法是GIS数据库,postgresql的使用),基于编码提取特征,将GIS特征变为数字特征作为输入参数;
    其他的特征还有:
  • 行程起止点GPS距离;
  • 行程的GPS点个数;
  • 行程所处时间段、日期;
  • 行程是否包含了预设的经常拥堵路段;
  • 驾驶员方面的因素;
  • 高德提供的特征:如导航时长
  • 未完待续。。。。。。
  1. 模型,这部分现在谈好像纸上谈兵,但是否使用一些机器学习的平台可以提前考虑下,比如H2O;
  2. 测试,
  3. 提交测试结果,可以查看下被用来预测数据的样式;目前最高分0.22。

尽量能在月底提交一次结果吧,通过与结果的比对,不断迭代更新算法吧。

任务 完成日期 任务分发
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,997评论 6 502
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,603评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,359评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,309评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,346评论 6 390
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,258评论 1 300
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,122评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,970评论 0 275
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,403评论 1 313
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,596评论 3 334
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,769评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,464评论 5 344
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,075评论 3 327
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,705评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,848评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,831评论 2 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,678评论 2 354

推荐阅读更多精彩内容