算法短记 — DTW(动态时间规整)

DTW (Dynamic Time Warping) 算法基于动态规划的思想,可以衡量两个长度不一致时间序列的相似度,由日本学者Itakura提出。

DTW

案例:

假设我们有三个时间序列,分别是

ts_a = [1,5,8,10,56,21,32,8]

ts_b = [1,5,8,10,23,56,21,32,8]

ts_c = [1,3,6,9,16,29,31,32,33]

ts_a与ts_b和ts_c的长度不一样,现在需要知道ts_a与ts_b和ts_c哪个更相似,通过观察,我们可以清楚的看出ts_a与ts_b的相似度更高。使用DTW相似度解决该问题的代码如下:

import sys
import numpy as np


def cal_dtw_distance(ts_a, ts_b):
    """Returns the DTW similarity distance between two 2-D
    timeseries numpy arrays.

    Arguments
    ---------
    ts_a, ts_b : array of shape [n_samples, n_timepoints]
        Two arrays containing n_samples of timeseries data
        whose DTW distance between each sample of A and B
        will be compared

    d : DistanceMetric object (default = abs(x-y))
        the distance measure used for A_i - B_j in the
        DTW dynamic programming function

    Returns
    -------
    DTW distance between A and B
    """
    d=lambda x, y: abs(x - y)
    max_warping_window = 10000

    # Create cost matrix via broadcasting with large int
    ts_a, ts_b = np.array(ts_a), np.array(ts_b)
    M, N = len(ts_a), len(ts_b)
    cost = sys.maxsize * np.ones((M, N))

    # Initialize the first row and column
    cost[0, 0] = d(ts_a[0], ts_b[0])
    for i in range(1, M):
        cost[i, 0] = cost[i - 1, 0] + d(ts_a[i], ts_b[0])

    for j in range(1, N):
        cost[0, j] = cost[0, j - 1] + d(ts_a[0], ts_b[j])

    # Populate rest of cost matrix within window
    for i in range(1, M):
        for j in range(max(1, i - max_warping_window),
                       min(N, i + max_warping_window)):
            choices = cost[i - 1, j - 1], cost[i, j - 1], cost[i - 1, j]
            cost[i, j] = min(choices) + d(ts_a[i], ts_b[j])

    # Return DTW distance given window
    return cost[-1, -1]

if __name__ == "__main__":
    # 案例:判断ts_a与ts_b和ts_c哪个更相似
    
    ts_a = [1,5,8,10,56,21,32,8]
    ts_b = [1,5,8,10,23,56,21,32,8]
    ts_c = [1,3,6,9,16,29,31,32,33]
    
    # 调用cal_dtw_distance计算dtw相似度
    dtw_ab = cal_dtw_distance(ts_a, ts_b)
    dtw_ac = cal_dtw_distance(ts_a, ts_c)
    
    print("ts_a与ts_b的dtw相似度为 %2.f,\nts_a与ts_c的dtw相似度为 %2.f。" % (dtw_ab, dtw_ac))
    
    if dtw_ab < dtw_ac:
        print("ts_a与ts_b 更相似!")
    else:
        print("ts_a与ts_c 更相似!")
ts_a与ts_b的dtw相似度为 13,
ts_a与ts_c的dtw相似度为 71。
ts_a与ts_b 更相似!

从执行结果可以看出,使用DTW相似度计算的结果与我们观察到的结果一致。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,539评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,911评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,337评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,723评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,795评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,762评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,742评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,508评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,954评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,247评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,404评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,104评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,736评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,352评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,557评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,371评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,292评论 2 352