机器学习第六周笔记 决策树,组合提升算法,bagging和adaboost,随机森林

决策树decision tree

什么是决策树
输入:学习集
输出:分类觃则(决策树)

  • 算法的核心问题

该按什么样的次序来选择变量(属性)?
最佳分离点(连续的情形)在哪儿?

ID3算法

image.png

例子

image.png

C4.5算法

image.png

例子

image.png

CART算法

image.png
image.png

代价复杂度剪枝
http://blog.csdn.net/tianguokaka/article/details/9018933
C4.5的悲观剪枝法
http://blog.csdn.net/tianguokaka/article/details/9018933

R语言实现决策树:rpart扩展包

image.png

怎样评估分类器效能?

image.png

提升分类器准确率的组合方法

image.png
  • 组合算法的优势

能明显提升判别准确率
对误差和噪音更加鲁棒性
一定程度抵消过度拟合
适合并行化计算

装袋算法

image.png
  • 袋装算法的优势

准确率明显高于组合中任何单个的分类器
对于较大的噪音,表现丌至于很差,并且具有鲁棒性
不容易过度拟合

提升(boosting)算法思想

训练集中的元组被分配权重
权重影响抽样,权重越大,越可能被抽取
迭代训练若干个分类器,在前一个分类器中被错误分类的元组,会被提高权重,使到它在后面建立的分类器里被更加“关注”
最后分类也是由所有分类器一起投票,投票权重取决于分类器的准确率

  • Adaboost算法
image.png
image.png
  • 提升算法的优缺点

可以获得比bagging更高的准确率
容易过度拟合

随机森林(Random Forest)算法

由很多决策树分类器组合而成(因而称为“森林”)
单个的决策树分类器用随机方法构成。首先,学习集是从原训练集中通过有放回抽样得到的自助样本。其次,参不构建该决策树的变量也是随机抽出,参不变量数通常大大小于可用变量数。
单个决策树在产生学习集和确定参不变量后,使用CART算法计算,丌剪枝
最后分类结果取决于各个决策树分类器简单多数选举

  • 随机森林算法优点

准确率可以和Adaboost媲美
对错误和离群点更加鲁棒性
决策树容易过度拟合的问题会随着森林觃模而削弱
在大数据情况下速度快,性能好

  • R的randomForest包
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,287评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,346评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,277评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,132评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,147评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,106评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,019评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,862评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,301评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,521评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,682评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,405评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,996评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,651评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,803评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,674评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,563评论 2 352

推荐阅读更多精彩内容