一、机器学习的方法包括:
1.监督学习 supervised learning; --最常用
特点:有数据和标签
算法:分类和回归
解释:有监督学习是指对数据的若干特征与若干标签(类型)之间的关联性进行建模的过程;只要模型被确定,就可以应用到新的未知数据上。这类学习过程可以进一步分为分类(classification)任务与回归(regression)任务。在分类任务中,标签都是离散值;而在回归任务中,标签都是连续值。
2.非监督学习 unsupervised learning;
特点:只有数据没有标签
算法:聚类
解释:无监督学习是指对不带任何标签的数据特征进行建模,通常被看成是一种“让数据自己介绍自己”的过程。这类模型包括聚类(clustering)任务和降维(dimensionality reduction)任务。聚类算法可以将数据分成不同的组别,而降维算法追求用更简洁的方式表现数据。
3.半监督学习 semi-supervised learning;
特点:少量有标签的样本,大量没有标签的样本
4.强化学习 reinforcement learning;
特点:从经验中总结提升
5.遗传算法 genetic algorithm.
特点:从经验中总结提升,适者生存
二、算法选择路径图:

三、模型特点
最近邻
适用于小型数据集,是很好的基准模型,很容易解释。
线性模型
非常可靠的首选算法,适用于非常大的数据集,也适用于高维数据。
朴素贝叶斯
只适用于分类问题。比线性模型速度还快,适用于非常大的数据集和高维数据。精度通常要低于线性模型。
决策树
速度很快,不需要数据缩放,可以可视化,很容易解释。
随机森林
几乎总是比单棵决策树的表现要好,鲁棒性很好,非常强大。不需要数据缩放。不适用于高维稀疏数据。
梯度提升决策树
精度通常比随机森林略高。与随机森林相比,训练速度更慢,但预测速度更快,需要的内存也更少。比随机森林需要更多的参数调节。
支持向量机
对于特征含义相似的中等大小的数据集很强大。需要数据缩放,对参数敏感。
神经网络
可以构建非常复杂的模型,特别是对于大型数据集而言。对数据缩放敏感,对参数选取敏感。大型网络需要很长的训练时间。