django 1.8 官方文档翻译: 2-6-4 数据库访问优化

Django 文档协作翻译小组人手紧缺,有兴趣的朋友可以加入我们,完全公益性质。

交流群:467338606

网站:http://python.usyiyi.cn/django/index.html

数据库访问优化

Django的数据库层提供了很多方法来帮助开发者充分的利用他们的数据库。这篇文档收集了相关文档的一些链接,添加了大量提示,并且按照优化数据库使用的步骤的概要来组织。

性能优先

作为通用的编程实践,性能的重要性不用多说。弄清楚你在执行什么查询以及你的开销花在哪里。你也可能想使用外部的项目,像django-debug-toolbar,或者直接监控数据库的工具。

记住你可以优化速度、内存占用,甚至二者一起,这取决于你的需求。一些针对其中一个的优化会对另一个不利,但有时会对二者都有帮助。另外,数据库进程做的工作,可能和你在Python代码中做的相同工作不具有相同的开销。决定你的优先级是什么,是你自己的事情,你必须要权衡利弊,按需使用它们,因为这取决于你的应用和服务器。

对于下面提到的任何事情,要记住在任何修改后验证一下,确保修改是有利的,并且足够有利,能超过你代码中可读性的下降。下面的所有建议都带有警告,在你的环境中大体原则可能并不适用,或者会起到相反的效果。

使用标准数据库优化技巧

...包括:

  • 索引。在你决定哪些索引应该添加 之后,这一条具有最高优先级。使用Field.db_index或者Meta.index_together在Dhango中添加它们。考虑在你经常使用filter()、exclude()、order_by()和其它方法查询的字段上面添加索引,因为索引有助于加速查找。注意,设计最好的索引方案是一个复杂的、数据库相关的话题,它取决于你应用的细节。持有索引的副作用可能会超过查询速度上的任何收益。
  • 合理使用字段类型。

我们假设你已经完成了上面这些显而易见的事情。这篇文档剩下的部分,着重于讲解如何以不做无用功的方式使用Django。这篇文档也没有强调用在开销大的操作上其它的优化技巧,像general purpose caching。

理解查询集

理解查询集(QuerySets) 是通过简单的代码获取较好性能至关重要的一步。特别是:

理解查询集计算

要避免性能问题,理解以下几点非常重要:

  • QuerySets是延迟的。
  • 什么时候它们被计算出来。
  • 数据在内存中如何存储。

理解缓存属性

和整个QuerySet的缓存相同,ORM对象的属性的结果中也存在缓存。通常来说,不可调用的属性会被缓存。例如下面的博客模型示例:

>>> entry = Entry.objects.get(id=1)
>>> entry.blog   # Blog object is retrieved at this point
>>> entry.blog   # cached version, no DB access

但是通常来讲,可调用的属性每一次都会访问数据库。

>>> entry = Entry.objects.get(id=1)
>>> entry.authors.all()   # query performed
>>> entry.authors.all()   # query performed again

要小心当你阅读模板代码的时候 —— 模板系统不允许使用圆括号,但是会自动调用callable对象,会隐藏上述区别。

要小心使用你自定义的属性 —— 实现所需的缓存取决于你,例如使用cached_property装饰符。

使用with模板标签

要利用QuerySet的缓存行为,你或许需要使用with模板标签。

使用iterator()

当你有很多对象时,QuerySet的缓存行为会占用大量的内存。这种情况下,采用iterator()解决。

在数据库中而不是Python中做数据库的工作

比如:

  • 在最基础的层面上,使用过滤器和反向过滤器对数据库进行过滤。
  • 使用F 表达式在相同模型中基于其他字段进行过滤。
  • 使用数据库中的注解和聚合。

如果上面那些都不够用,你可以自己生成SQL语句:

使用QuerySet.extra()

extra()是一个移植性更差,但是功能更强的方法,它允许一些SQL语句显式添加到查询中。如果这些还不够强大:

使用原始的SQL

编写你自己的自定义SQL语句,来获取数据或者填充模型。使用django.db.connection.queries来了解Django为你编写了什么,以及从这里开始。

用唯一的被或索引的列来检索独立对象

有两个原因在get()中,用带有unique或者db_index的列检索独立对象。首先,由于查询经过了数据库的索引,所以会更快。其次,如果很多对象匹配查询,查询会更慢一些;列上的唯一性约束确保这种情况永远不会发生。

所以,使用博客模型的例子:

>>> entry = Entry.objects.get(id=10)

会快于:

>>> entry = Entry.object.get(headline="News Item Title")

因为id被数据库索引,而且是唯一的。

下面这样做会十分缓慢:

>>> entry = Entry.objects.get(headline__startswith="News")

首先, headline没有被索引,它会使查询变得很慢:

其次,这次查找并不确保返回唯一的对象。如果查询匹配到多于一个对象,它会在数据库中遍历和检索所有这些对象。如果记录中返回了成百上千个对象,代价是非常大的。如果数据库运行在分布式服务器上,网络开销和延迟也是一大因素,代价会是它们的组合。

一次性检索你需要的任何东西

在不同的位置多次访问数据库,一次获取一个数据集,通常来说不如在一次查询中获取它们更高效。如果你在一个循环中执行查询,这尤其重要。有可能你会做很多次数据库查询,但只需要一次就够了。所以:

使用QuerySet.select_related()和prefetch_related()

充分了解并使用select_related()和prefetch_related():

  • 在视图的代码中,
  • 以及在适当的管理器和默认管理器中。要意识到你的管理器什么时候被使用和不被使用;有时这很复杂,所以不要有任何假设。

不要获取你不需要的东西

使用QuerySet.values()和values_list()

当你仅仅想要一个带有值的字典或者列表,并不需要使用ORM模型对象时,可以适当使用values()。对于在模板代码中替换模型对象,这样会非常有用 —— 只要字典中带有的属性和模板中使用的一致,就没问题。

使用QuerySet.defer()和only()

如果一些数据库的列你并不需要(或者大多数情况下并不需要),使用defer()和only()来避免加载它们。注意如果你确实要用到它们,ORM会在另外的查询之中获取它们。如果你不能够合理地使用这些函数,不如不用。

另外,当建立起一个带有延迟字段的模型时,要意识到一些(小的、额外的)消耗会在Django内部产生。不要不分析数据库就盲目使用延迟字段,因为数据库必须从磁盘中读取大多数非text和VARCHAR数据,在结果中作为单独的一行,即使其中的列很少。 defer()和only()方法在你可以避免加载大量文本数据,或者可能要花大量时间处理而返回给Python的字段时,特别有帮助。像往常一样,应该先写出个大概,之后再优化。

使用QuerySet.count()

...如果你想要获取大小,不要使用 len(queryset)。

使用QuerySet.exists()

...如果你想要知道是否存在至少一个结果,不要使用if queryset。

但是:

不要过度使用 count() 和 exists()

如果你需要查询集中的其他数据,就把它加载出来。

例如,假设Email模型有一个body属性,并且和User有多对多的关联,下面的的模板代码是最优的:

{% if display_inbox %}
  {% with emails=user.emails.all %}
    {% if emails %}
      <p>You have {{ emails|length }} email(s)</p>
      {% for email in emails %}
        <p>{{ email.body }}</p>
      {% endfor %}
    {% else %}
      <p>No messages today.</p>
    {% endif %}
  {% endwith %}
{% endif %}

这是因为:

  • 因为查询集是延迟加载的,如果‘display_inbox’为False,不会查询数据库。
  • 使用with意味着我们为了以后的使用,把user.emails.all储存在一个变量中,允许它的缓存被复用。
  • {% if emails %}的那一行调用了QuerySet.bool(),它导致user.emails.all()查询在数据库上执行,并且至少在第一行以一个ORM对象的形式返回。如果没有任何结果,会返回False,反之为True。
  • {{ emails|length }}调用了QuerySet.len()方法,填充了缓存的剩余部分,而且并没有执行另一次查询。
  • for循环的迭代器访问了已经缓存的数据。

总之,这段代码做了零或一次查询。唯一一个慎重的优化就是with标签的使用。在任何位置使用QuerySet.exists()或者QuerySet.count()都会导致额外的查询。

使用QuerySet.update()和delete()

通过QuerySet.update()使用批量的SQL UPDATE语句,而不是获取大量对象,设置一些值再单独保存。与此相似,在可能的地方使用批量deletes。

但是要注意,这些批量的更新方法不会在单独的实例上面调用save()或者delete()方法,意思是任何你向这些方法添加的自定义行为都不会被执行,包括由普通数据库对象的信号驱动的任何方法。

直接使用外键的值

如果你仅仅需要外键当中的一个值,要使用对象上你已经取得的外键的值,而不是获取整个关联对象再得到它的主键。例如,执行:

entry.blog_id

而不是:

entry.blog.id

不要做无谓的排序

排序并不是没有代价的;每个需要排序的字段都是数据库必须执行的操作。如果一个模型具有默认的顺序(Meta.ordering),并且你并不需要它,通过在查询集上无参调用order_by() 来移除它。

向你的数据库添加索引可能有助于提升排序性能。

整体插入

创建对象时,尽可能使用bulk_create()来减少SQL查询的数量。例如:

Entry.objects.bulk_create([
    Entry(headline="Python 3.0 Released"),
    Entry(headline="Python 3.1 Planned")
])

...更优于:

Entry.objects.create(headline="Python 3.0 Released")
Entry.objects.create(headline="Python 3.1 Planned")

注意该方法有很多注意事项,所以确保它适用于你的情况。

这也可以用在ManyToManyFields中,所以:

my_band.members.add(me, my_friend)

...更优于:

my_band.members.add(me)
my_band.members.add(my_friend)

...其中Bands和Artists具有多对多关联。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,332评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,508评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,812评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,607评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,728评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,919评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,071评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,802评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,256评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,576评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,712评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,389评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,032评论 3 316
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,798评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,026评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,473评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,606评论 2 350

推荐阅读更多精彩内容