@erixhao
大数据时代,分布式缓存领域,大家可能较为熟悉Redis,当红一哥,还有经典老将Memcached, 以及新秀Apache Ignite, 当然还有Oracle的Coherence内存数据网格,今天我们主要关注投行金融领域的分布式缓存一哥Gemfire。
1. 前世今生
Gemfire的第一个商业版本由GemStone公司操刀正式发布于2002-2003年间,成为业界J2EE JCache -JSR107标准的中间件,兼容Java, C++, C#, 并在CEP(Complex Event Processing)处理领域一枝独秀。2008年借着金融危机之际凭着其实力击败老牌厂商Oracle, 大举进入华尔街金融领域,而其中Citi则是Gemfire的铁粉,据称全球2/3的Gemfire应用跑在Citi的服务器上,尤其是固定收益类交易系统的最爱,各位老友看到请自动点赞举牌。
之后GemStone被Spring之父Rod Johnson在当时的VMare时慧眼识珠,2010年收购并入SpringSource部门作为进军Cloud以及大数据的入口,目前则与Spring一并成为Pivotal中重要的In-Memory Data Grid, 并于2015年其核心模块开源为Apache Geode核心项目。
2. Gemfire整体分布式架构
总体来说Gemfire提供了基于内存的海量数据实时处理平台,包括低延迟高吞吐,线性动态扩展
(流行的话叫“弹性水平扩展”),HA,MapReduce,听起来很Hadoop, 这些是一切后SQL时代的分布式大数据产品入门款必备装备。
可以粗略看出Gemfire一些精髓, 如支持CEP Subscribers, 数据支持Replicated, Partitioned, 线性水平扩展,Shared Nothing Disk Persistence, Cache同步Read/Write Through与异步Write Behind。
3. 核心概念
1. Region
Region是Gemfire中一Map的分布式实现,同时具备了支持查询,事务。这个是Gemfire的核心中核心,一切的一切始于此。
Replicated Region: 一个Replicated Region保存所有分区的数据拷贝。
Partitioned Region: 只保存一部分分区的数据拷贝。
2. Shared-Nothing Persistence
支持非共享持久化,每一个peer持久化数据到本地磁盘,Gemfire持久化允许在磁盘维护一份配置的数据拷贝
3. Distributed
Distributed Member: Gemfire托管的集群中成员
Distributed Transaction: 跨节点,集群更新事务,分布式事务。
Distrbuted Lock: 分布式集群锁
4. Locator & Gateway
Gemfire的Locator类似ZooKeeper, 协调客户端与服务器成员,相互发现,以及简单负载均衡(非负荷均载)。
Gateway: 作为Gemfire跨WAN网同步数据,如HK, TK, NY等。
4. 拓扑结构
1. Peer-to-Peer
缓存潜入应用,共享堆内存,适合小型缓存应用。
原以为这种架构在企业,金融机构无用武之地,殊不知一些大型金融机构的小型IT项目竟然采用此架构,没办法cowboy,今天需求明天生产。
2. Client/Server结构
缓存层由分布式集群系统来组成,是多数中大型系统首选。
其中分布式引入Loactor来管理,结耦,离散,分布客户端与服务器端。
客户端服务器发现机制:
上图可以看出客户端与服务器通信要先透过Locator提供的发现机制,当然鉴于此所有的服务器端必须与Locator进行通信广播其生死状态,类似ZK。Locator通过JVM广播消息或者TCP实现通信定位。每个新加入或者离开的成员都会更新Loactor,并从Locator上发现目前可用成员列表。
我们看一下客户端完整通信图:
另外,Locator可以提供简单负载均衡,只是基于当前服务器是否有客户端连接而已。
Gemfire提供了垮节点将键值对均匀分布到节点,以及一致性哈希算法等。
如果希望定制负载负荷均衡,Gemfire提供了Member Groups,可以把某些服务器分组,固定为某些客户/某类请求服务,再获得负荷均衡的优势同时也失去了全局分布式的优势,正所谓有利有弊。
Server内部提供了connection poor,queue以及subscription机制,以并行处理以CEP事件通知机制。同样,Gemfire客户端也提供了connection pool。
经验丰富的老司机看到这里肯定会说,全局就一个Locator一定会造成单点故障,当然分布式系统的必备。Gemfire也提供了启动多个Locator的能力。
3.多地/多数据中心WAN部署
互联网世界比较流行,行话异地多活,全国甚至全球多地多数据中心部署。大型金融系统中也是不可或缺的,如全球多金融中心部署,NY, London, HK, TK等分布式多数据中心缓存。做的好的话,可以做到任意一个数据中心瘫痪,系统自动切换到其他数据中心运营,差的话就要人工干预了,不过至少不会完全瘫痪。
多数据中心的数据同步则是靠gateway来同步的,gateway receiver与gateway sender来发送接受数据中心的变化,如上图东京如果有缓存数据变化,新增或者变化,则会通过gateway发送给纽约的集群,通过gateway receiver来更新纽约的缓存,由于跨多地,网络,所以非实时同步更新,做到最终一致性。当然sender中必须提供了queue。
一个数据中心的集群是靠Locator来维系发现各个服务器的,对于跨多数据中心,Gemfire则通过每个集群的distributed-system-id,依靠remote-locators来发现数据中心集群是否存活。
如下图定型的全球部署系统架构:
多数据中心支持多种拓扑结构,如Parallel则是每个数据中心均相互感知,当然其数据同步,通信也必然耗资源。
当然,还有其它多种网络拓扑,介于每个数据中心网络,带宽以及其它因素,最好与网络系统人员一起设计网络拓扑结构。
部署拓扑结构
新版的Gemfire 8.x支持多种部署拓扑结构:
图是Pivotal的黑酷炫风格,放到微信图太小了,不解释,基本是我们上面的细分与组合。
5. Data Region
上文介绍过,Region是Gemfire中用来管理,存储数据的核心数据结构,本身实现了Map接口,类似于ConcurrentMap,同时支持分布式跨物理节点。
Region同时支持嵌套,子Region。Region又区分为Patitioned,Replicated, Distributed non-replicated, Non-distributed(local)。
Gemfire的Data Region的读写操作支持同步读,同步写,异步写。
数据分布模型支持D-no-Ack, D-Ack, Global(锁)。
此外,Region还进行分布式支持以下高阶:
- 溢出至磁盘持久化(LRU)
- 持久化到磁盘
- 跨节点数据同步
- 外部数据源(数据库)延迟加载数据
- OQL
1 Replicated Region
Replicated Region在每个Gemfire成员上都同步的保存一份完整的数据拷贝。Proxy:数据不存在本地缓存,Proxy成员提供了对Region的访问,需要其它成员配置Region的Non-Proxy拷贝用以存放数据。
显然这是以空间换时间;这种Data Region适用于小型数据集并且读很频繁的操作;
2 Partitioned Region
Partitioned Region顾名思义,将数据分散,每个成员近保存数据一部分,时间换空间;
既然分区存储了,一定是适合大数据的数据集了,以及写/修改较多的数据集,并提供给了分布式并行查询,处理, MapReduce。
3 OQL
Region提供类SQL, 基于SQL-92子集的OQL查询,注意可以跨分布式节点以及并行查询,这点是很多缓存不具备的,尽管简单。
SELECT, WHERE, DISTINCT, COUNT, IN, LIKE, 嵌套自查询,Map查询( p['key'] = '1.0' ),ORDER BY,。
注意,OQL仅支持COUNT,不支持其它SUM, MIN, MAX。
另外,OQL支持Limit, 类似TOP:
SELECT * FROM /Region1 limit 100;
这里还提供高阶的Join, 大多数No-SQL都不支持,这里因为更类似二维表格,也提供了Join操作, 如下:
SELECT * FROM /Region1 r1, /Region2 r2 WHERE r1.status = r2.status;
可见,还是相对较熟悉,强大。当然这里的Join仅支持内连接,并不支持左右连接,毕竟没有那么强大。
既然可以提供OQL查询,支持Join, 那老司机又问是否可以做Index? 还真可以。
当然也支持代码动态创建了。当然,没有免费的午餐,与RDBMS类似,索引是把双刃剑,提供索引必然会降低修改,更新性能,提升查询性能。
用惯了Oracle了老鸟,这里居然也支持HINT,好吧。
当然,也不建议用过度负载的OQL,毕竟不是强大的RDBMS,况且考虑到兼容性,可移植性,以及没有那么强大的调试支持。
6. 事务支持
事务的操作首先作用在数据主拷贝节点,然后分布到其它成员。其中:
- 运行事务代码的成员被称作事务初始化器
- 管理事务和数据的成员被称为事务数据节点
Gemfire提供了分布式事务支持,难能可贵,在分布式世界里,提供分布式事务可比较重!所以尽量少用,开销太大,甚至可能全局死锁。
Gemfire同样提供了分布式锁支持,可以显示创建分布式锁, 在任何一个时间点,
工作原理:
在并发访问缓存的时候, 事务之间是隔离的。每一个事务都有自己的私有空间,包括已经读取的数据及其变更;当一个数据条目进入事务时,将在事务视图/空间生成一个数据状态的快照,此事务能保存数据的原始状态,快照的另一个作用则用于题解恢复写冲突。
当事务提交成功时,事务视图中的记录被合并到缓存上,如果提交失败或者回滚,则所有变更将放弃。提交事务时,Gemfire采用了两阶段提交协议, Two-Phase commit Protocol。
Gemfire甚至支持了JTA分布式事务:
惨不忍睹,自己官方文档都放不下该图,可见复杂。不推荐,不建议。
通常,非必需,不建议使用分布式事务,因为会大大降低整体的性能,这与使用缓存的本意背驰。
7 分布式锁
Gemfire也提供了分布式锁支持,在任何一个时间节点,Gemfire系统保证只有一个线程可以用于该锁。另外线程将锁定整个服务,防止系统中其它线程锁定这个服务。可见其成本之高。
分布式锁分为隐式锁与显示锁。大多数情况下,系统自动利用隐式锁进行数据操作。锁服务从系统成员接受锁请求,并放入队列,按顺序授予锁。授予者负责运行锁服务。
当分布式锁服务创建时,分布式系统中某个成员通过选举成为分布式锁服务的授予者,授予者负责管理这个锁。当这个成员出现故障时,锁授予功能将被迁移到其它成员,且不丢失锁状态;这些细节处处可以看到分布式设计的目标及精髓。
8. Map Reduce
Gemfire与时俱进,提供了在分布式节点进行Map Reduce的操作函数。
函数用Java自行编写,部署,运行。Gemfire支持两种形式的函数运行模式,方式1,提前注册并部署自定义函数到每个成员,运行时指定函数名字,显然不灵活,高耦合,每次改动函数都要全局部署;方式2,运行时动态ship函数,所谓ship function rather than data;更加现代的模式(从Gemfire 6.x开始支持)当然为了做到这种高效,必然要RPC + 序列化,所谓有利有弊,好处显然易见,首选推荐。
9. Management
分布式系统的Dev & Ops中的Ops也是重中之重,侧面反映一个分布式系统的成熟度。
Gemfire支持gfsh command-line执行启动/停止,部署,创建region,执行函数,管理硬盘存储,倒入导出缓存数据,监控process等等,灵活强大;
同时Gemfire支持JMX, Gemfire Pulse, Data Browser, VSD, JConsole/JVisualVM等。
JMX太土?当然,Gemfire提供很多集成工具用来监控内存,磁盘,Region, 网络, 统计分析等等。
下面我们看几个Gemfire Pulse的监控视图:
Cluster监控
集群中每个member的状况:
Region View:
Data Browser, 缓存当然需要一个即视的数据浏览器支持了。
10. 12306
是的,12306;国内Gemfire最牛X至少是最著名的应用。当与老外同事介绍时,'12306', 一脸萌相,这名字起的。好吧‘China's Largest Online Trading System’ , 听懂了,有时候需要吹一下。
12306的架构正是运行在Linux X86的集群Gemfire, 水平弹性扩展,当年铁道部想必也是调研了众多分布式产品,多重分析评估,最终Gemfire胜出。Gemfire在支持万次/每秒查询,以及高频写/修改,二者兼备的佼佼者。
11. DT时代的Gemfire
临时加一章了,老东家的Gemfire铁粉太多,得来点干货了。
1
Roadmap
DT时代,Gemfire当然要配合,整合自家的PaaS平台,以及支持HDFS, Spark, Off-heap存储,以及在云端。
2 Architecture
大数据时代,Pivotal重新定位了Gemfire以及组织了产品线。
大数据的三驾马车,涉猎In-Memory Data Grid, Data Warehouse, Haddop SQL。
总结
Gemfire是一款在金融领域称霸,被证实的好产品,目前在新秀Pivotal的领导下,全面进入下一个时代,我们拭目以待。
关注公众号:技术极客TechBooster