Stanford机器学习---第二讲. 多变量线性回归 Linear Regression with multiple variable

原文:http://blog.csdn.net/abcjennifer/article/details/7700772

本栏目(Machine learning)包括单参数的线性回归、多参数的线性回归、Octave Tutorial、Logistic Regression、Regularization、神经网络、机器学习系统设计、SVM(Support Vector Machines 支持向量机)、聚类、降维、异常检测、大规模机器学习等章节。所有内容均来自Standford公开课machine learning中Andrew老师的讲解。(https://class.coursera.org/ml/class/index

第二讲-------多变量线性回归 Linear Regression with multiple variable

(一)、Multiple Features:

多变量假设:输出由多维输入决定,即输入为多维特征。如下图所示:Price为输出,前面四维为输入:

假设h(x)=θ0+θ1x1+……所谓多参数线性回归即每个输入x有(n+1)维[x0……xn]

(二)、Gradient Descent for Multiple Variables:

左边为但参数的梯度递减单变量学习方法,右图new algorithm为多变量学习方法。

(三)、Gradient Descent for Multiple Variables - Feature Scaling

It is important to 归一化feature,所以用到了feature scaling,即将所有feature归一化到[-1,1]区间内:

归一化方法:xi=(xi-μi)/σi

(四)、Gradient Descent for Multiple Variables - Learning Rate

梯度下降算法中另一关键点就是机器学习率的设计:设计准则是保证每一步迭代后都保证能使cost function下降。

这是cost function顺利下降的情况:

这是cost function不顺利下降的情况:

原因如右图所示,由于学习率过大,使得随着迭代次数的增加,J(θ)越跳越大,造成无法收敛的情况。

解决方法:减小学习率

总结:如何选取学习率:

测试α=0.001,收敛太慢(cost function下降太慢),测试0.01,过了?那就0.003……

(五)、Features and Polynomial Regression

假设我们的输入为一座房子的size,输出为该house的price,对其进行多项式拟合:

有两个选择,二次方程或者三次方程。考虑到二次方程的话总会到最高点后随着size↑,price↓,不合常理;因此选用三次方程进行拟合。

这里归一化是一个关键。

或者有另一种拟合方程,如图粉红色曲线拟合所示:

(六)、Normal Equation

与gradient descent平行的一种方法为Normal Equation,它采用线性代数中非迭代的方法,见下图:

我们想要找到使cost function 最小的θ,就是找到使得导数取0时的参数θ:

该参数可由图中红框公式获得:

具体来说:X是m×(n+1)的矩阵,y是m×1的矩阵

上图中为什么x要加上一列1呢?因为经常设置X(i)0=1;

下面比较一下Gradient Descent与Normal Equation的区别:

(七)、Normal Equation Noninvertibility

我们已知,对于有m个样本,每个拥有n个feature的一个训练集,有X是m×(n+1)的矩阵,XTX是(n+1)×(n+1)的方阵,那么对于参数θ的计算就出现了一个问题,如果|XTX|=0,即XTX不可求逆矩阵怎么办?这时可以进行冗余feature的删除(m<=n的情况,feature过多):

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,843评论 6 502
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,538评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,187评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,264评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,289评论 6 390
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,231评论 1 299
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,116评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,945评论 0 275
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,367评论 1 313
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,581评论 2 333
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,754评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,458评论 5 344
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,068评论 3 327
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,692评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,842评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,797评论 2 369
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,654评论 2 354

推荐阅读更多精彩内容