【Tableau】客户留存模型

【主要成果图】

一、模型概念

客户留存模型是测量我们留住新客户的能力,我们计算出某个合适的时间段(如月)的获客数量,再计算之后每个月,这个月的获得的客人的购买数量,购买的客人占这个时间段获客的总数的比例为客户留存率。(即到这个时间段,当时获得的客户还有多少在购买)

二、数据源

某文具批发商2013-2016年近10000条基础销售数据,包括时间,地区,客户名称,此条目商品类别,数量,销售额,利润等基本信息。

三、使用工具

希望最后可视化数据留存模型,使用Tableau制图。

四、模型建立过程

1.计算出每个客户的第一次购买日期FOD,即是我们得到这个新客户的日期。

2.以合适的日期间隔放在FOD上,这里我们取月,这样我们得到每个月得到的新客户,比如2013年1月。(一个客户只有一个FOD,这个相当于他的标签,得以计算同一个FOD的客户群各个月的购买情况)

3.计算流逝的时间字段,让图左对齐(这里的时间间隔是设置为季度或者月度,方便对不同模型进行修改)

4.计算2013年1月得到的客户群中在之后的每个月有多少客户购买。通过设置COUNTD(客户),在横轴纵轴确认后,可自动计算。

5.用之后每个月还在购买的客户数 除以 2015年1月得到的客户数,则为当月的存留率。(在表计算中设置为合计百分比,计算依据选择表向下),最终得到结果图如下:

五、模型特点

1.客户留存模型在互联网行业、零售行业等客户与商家要产生高频率互动的行业非常有价值,对于留存率低下的时间点,可以分析这段时间的运营策略,找出原因,方便作出商业行为调整。

2.注意FOD在不同时间段的客户,在相同逝去时间下经历的该时间段的商品/产品/服务形式是不同的。如某APP在2013年1月获得的客户,在第二个月2013年2月使用的产品,和2016年1月获得的客户,在第二个月2013年2月使用的产品肯定是不一样的。因此我们可以根据哪个阶段获取的客户留存率最好(或最差),分析总结这段时间的运营经验。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 219,490评论 6 508
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,581评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 165,830评论 0 356
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,957评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,974评论 6 393
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,754评论 1 307
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,464评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,357评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,847评论 1 317
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,995评论 3 338
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,137评论 1 351
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,819评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,482评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,023评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,149评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,409评论 3 373
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,086评论 2 355