典型的"动态规划"题目总结(斐波那契数列相关)!

1、常规跳台阶

       一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果)。

大体思路:

       第 i 个楼梯可以从第 i-1 和 i-2 个楼梯再走一步到达,即走到第 i 个楼梯的方法数为走到第 i-1 和第 i-2 个楼梯的方法数之和。所以可以推导出递推公式为:dp[i]=dp[i-1]+dp[i-2]

       考虑到 dp[i] 只与 dp[i - 1] 和 dp[i - 2] 有关,因此可以只用两个变量来存储 dp[i - 1] 和 dp[i - 2],使得原来的 O(N) 空间复杂度优化为 O(1) 复杂度。具体非递归代码如下:++++++++++++++++++++++++++


 2、变态跳台阶

       一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。

大致思路:

(1)每一个高度的台阶都可以一步完成,所以每一个位置都有一种基本解 dp[i]=1

(2)除了基本解之外,每一个高度的完成解还受到且仅受到前一个相邻高度dp[i-1]的影响。

(3)因此,每一个高度的最终解都是前一个数的解()+本身的基本解。即,dp[i]=1+dp[i-1];

 

3、抢劫一排房子

       你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。给定一个代表每个房屋存放金额的非负整数数组,计算你在不触动警报装置的情况下,能够偷窃到的最高金额。

大体思路:

(1)相邻的房间不可以偷==》偷了i就不可以偷i-1.

(2)那么假如i为一排房间的最后一间,那么走过当前i个房间的最大值为:

       dp[i]=max(dp[i-2]+numms[i],dp[i-1]);

       因此,也需要两个值dp[i-1],dp[i-2]。


4、抢劫一圈房子(环形的第一家和最后一家是相邻的)

       你是一个专业的小偷,计划偷窃沿街的房屋,每间房内都藏有一定的现金。这个地方所有的房屋都围成一圈,这意味着第一个房屋和最后一个房屋是紧挨着的。同时,相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。给定一个代表每个房屋存放金额的非负整数数组,计算你在不触动警报装置的情况下,能够偷窃到的最高金额。

解题思路:

/**

(1)先考虑直线型的情况,当一共有i个房间时,偷了i,就不能再偷i-1.只能偷i-2.

所以 dp[i]=Math.max(nums[i]+dp[i-2],dp[i-1]);

(2)环形道的话,可以在直线型的基础上进行考虑,因为第一和最后一个变成了相邻,所以

       偷了第一个就不能偷最后一个了。

       从第二个开始偷,才可以偷最后一个。

因此,可以从这两种路径中选一个最大的作为最终的结果值。

**/


5、大牛生小牛问题

       假设农场中成熟的母牛每年都会生 1 头小母牛,并且永远不会死。第一年有 1 只小母牛,从第二年开始,母牛开始生小母牛。每只小母牛 3 年之后成熟又可以生小母牛。给定整数 N,求 N 年后牛的数量。

思路:

(1)在前三年,只有母牛才可以生产。

(2)因为所有的牛都不会死,因此,第N-1年的所有牛dp[N-1]都会活到第N年。

(3)因为成熟的母牛每年都会生 1 头小母牛。因此,第N-3年中的所有牛到第N年都会新增一个小母牛。dp[N-3]。

       N 年后牛的总数量为:一直的大母牛dp[N-1]+新增的小母牛dp[N-3]。


 6、矩阵覆盖问题

       我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形。请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法?

       思路类似于常规跳台阶。

       希望能够对需要的小伙伴们有帮助!愿小伙伴们越来越强大!

       “我是一名从事了10年开发的高龄程序员,最近我花了一些时间整理了一个完整的学习C语言、C++的路线,项目源码和工具。对于想学习C/C++的小伙伴而言,学习的氛围和志同道合的伙伴很重要,笔者推荐我专栏的C语言/C++编程爱好者的聚集地>>>C语言/C++进阶之路 - 专题 - 简书

       欢迎初学和进阶中的小伙伴!工作需要、感兴趣、为了入行、转行需要学习C/C++的伙伴可以一起学习!

喜欢小编的记得动动您的小指点个关注哟!

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,047评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,807评论 3 386
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,501评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,839评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,951评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,117评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,188评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,929评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,372评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,679评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,837评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,536评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,168评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,886评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,129评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,665评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,739评论 2 351

推荐阅读更多精彩内容