机器学习:使用BP网络对数字0至9进行分类

题目为今天算法课程留下的作业,要求使用MATLAB实现,现给出python版本,实验要求如下:

分析一下题目,既然使用BP网络,我们可以在BPNNet的基础上增加多分类器效果,最后通过预测的分类结果概率,获得预测结果。关于BP网络的介绍,可以看这一篇:http://www.jianshu.com/p/fa1111d05a3f
代码如下:

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

X=np.array([ [0,0,0,0,0,0,0,0,1,1,1,1,1,0,0,1,0,0,0,1,0,0,1,0,0,0,1,0,0,1,0,
     0,0,1,0,0,1,0,0,0,1,0,0,1,0,0,0,1,0,0,1,1,1,1,1,0,0,0,0,0,0,0,0],
    [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,
     1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,1,1,1,1,1,0,0,0,0,0,0,0,0],
    [0,0,0,0,0,0,0,0,1,1,1,1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,1,1,
     1,1,1,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,1,1,1,1,0,0,0,0,0,0,0,0],
    [0,0,0,0,0,0,0,0,1,1,1,1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,
     1,1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,1,1,1,1,1,0,0,0,0,0,0,0,0],
    [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,1,0,0,0,0,1,1,
     1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0],
    [0,0,0,0,0,0,0,0,1,1,1,1,1,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,1,
     1,1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,1,1,1,1,1,0,0,0,0,0,0,0,0],
    [0,0,0,0,0,0,0,0,1,1,1,1,1,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,1,
     1,1,1,0,0,1,0,0,0,1,0,0,1,0,0,0,1,0,0,1,1,1,1,1,0,0,0,0,0,0,0,0],
    [0,0,0,0,0,0,0,0,1,1,1,1,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,
     1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0],
    [0,0,0,0,0,0,0,0,1,1,1,1,1,0,0,1,0,0,0,1,0,0,1,0,0,0,1,0,0,1,1,
     1,1,1,0,0,1,0,0,0,1,0,0,1,0,0,0,1,0,0,1,1,1,1,1,0,0,0,0,0,0,0,0],
    [0,0,0,0,0,0,0,0,1,1,1,1,1,0,0,1,0,0,0,1,0,0,1,0,0,0,1,0,0,1,1,
     1,1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0]
    ])

Xtest=np.array([ [0,0,0,0,0,0,0,0,1,1,0,1,1,0,0,1,0,0,0,0,0,0,1,0,0,0,1,0,0,1,0,
     0,0,1,0,0,1,0,0,0,1,0,0,1,0,0,0,1,0,0,1,1,1,1,1,0,0,0,0,0,0,0,0],
    [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,
     1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,1,1,1,1,1,0,0,0,0,0,0,0,0],
    [0,0,0,0,0,0,0,0,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,
     1,1,1,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0],
    [0,0,0,0,0,0,0,0,1,1,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,
     1,1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,1,1,1,1,1,0,0,0,0,0,0,0,0],
    [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,1,0,0,0,0,0,1,
     1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0],
    [0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,1,
     1,1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,0,0,0,0,0,0,0],
    [0,0,0,0,0,0,0,0,1,0,1,1,1,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,1,
     1,1,0,0,0,1,0,0,0,1,0,0,1,0,0,0,1,0,0,1,1,1,1,1,0,0,0,0,0,0,0,0],
    [0,0,0,0,0,0,0,0,1,0,1,1,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,
     1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0],
    [0,0,0,0,0,0,0,0,1,0,1,1,1,0,0,1,0,0,0,1,0,0,1,0,0,0,0,0,0,1,1,
     1,1,1,0,0,1,0,0,0,1,0,0,1,0,0,0,1,0,0,1,1,1,1,1,0,0,0,0,0,0,0,0],
    [0,0,0,0,0,0,0,0,1,1,1,0,1,0,0,1,0,0,0,1,0,0,1,0,0,0,1,0,0,0,1,
     1,1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0]
    ])
y=np.array([0,1,2,3,4,5,6,7,8,9])
class NNet3:
    def __init__(self, learning_rate=0.5, maxepochs=1e4, convergence_thres=1e-5, hidden_layer=9):
        self.learning_rate = learning_rate
        self.maxepochs = int(maxepochs)
        self.convergence_thres = 1e-5
        self.hidden_layer = int(hidden_layer)

    def _sigmoid_activation(self,x, theta):
        x = np.asarray(x)
        theta = np.asarray(theta)
        return 1 / (1 + np.exp(-np.dot(theta.T, x)))

    def _multiplecost(self, X, y):
        l1, l2 = self._feedforward(X) 
        # compute error
        inner = y * np.log(l2) + (1-y) * np.log(1-l2)
        return -np.mean(inner)  

    def _feedforward(self, X):
        l1 = self._sigmoid_activation(X.T, self.theta0).T
        l1 = np.column_stack([np.ones(l1.shape[0]), l1])
        l2 = self._sigmoid_activation(l1.T, self.theta1)
        return l1, l2

    def predict(self, X):
        _, y = self._feedforward(X)
        return y 

    def learn(self, X, y):
        nobs, ncols = X.shape
        self.theta0 = np.random.normal(0,0.01,size=(ncols,self.hidden_layer))
        self.theta1 = np.random.normal(0,0.01,size=(self.hidden_layer+1,1))
        self.costs = []
        cost = self._multiplecost(X, y)
        self.costs.append(cost)
        costprev = cost + self.convergence_thres+1  
        counter = 0  

        # Loop through until convergence
        for counter in range(self.maxepochs):
            l1, l2 = self._feedforward(X)

            # Start Backpropagation
            # Compute gradients
            l2_delta = (y-l2) * l2 * (1-l2)
            l1_delta = l2_delta.T.dot(self.theta1.T) * l1 * (1-l1)

            # Update parameters
            self.theta1 += l1.T.dot(l2_delta.T) / nobs * self.learning_rate  # theta1是一个5*1的数组,调整完也是。
            self.theta0 += X.T.dot(l1_delta)[:,1:] / nobs * self.learning_rate

            counter += 1  # Count
            costprev = cost  # Store prev cost
            cost = self._multiplecost(X, y)  # get next cost
            self.costs.append(cost)

            if np.abs(costprev-cost) < self.convergence_thres and counter > 500:
                break

learning_rate = 0.5
maxepochs = 10000       
convergence_thres = 0.00001  
hidden_units = 10


#Train model
#
models={}
for i in y:
    model=NNet3(learning_rate=learning_rate, maxepochs=maxepochs,
          convergence_thres=convergence_thres, hidden_layer=hidden_units)
    y_train=y==i  #因为预测列只能是binary classification,所以应把它转化为只有0/1或true/false的形式。
    model.learn(X, y_train)
    models[i]=model

#Predict numbers:
testing_probs = pd.DataFrame(columns=y)
for i in y:
    predictions=models[i].predict(Xtest)[0]
    testing_probs[i]=predictions
    
predicted_numbers=testing_probs.idxmax(axis=1)
print('识别结果(概率)\n:',testing_probs)
print("输入数字集的识别结果为:")
print(list(predicted_numbers))

#Make changing curve of cost:
plt.plot(model.costs)
plt.title("Convergence of the Cost Function")
plt.ylabel("J($\Theta$)")
plt.xlabel("Iteration")
plt.show()


预测结果概率
预测结果
cost曲线
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,372评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,368评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,415评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,157评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,171评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,125评论 1 297
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,028评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,887评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,310评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,533评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,690评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,411评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,004评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,659评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,812评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,693评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,577评论 2 353

推荐阅读更多精彩内容