前言
在之前的分享中,我们已经学会了简书和知乎小姐姐的爬虫。今天罗罗攀把魔爪伸向了微博网红们,我们找找谁是最美网红。今天的流程如下:
网页分析
这里的微博网红链接:https://weibo.com/a/hot/7549094253303809_1.html,这个是微博关注中的新鲜事(大家不需要了解太多,就这个url即可)。里面收集了近段时间的热门网红微博。
这个网页简单,我们直接使用lxml库来解析即可。这里就强调一点,这个图片是普清的,进入详细页面可以是高清图片,但我发现只需要将图片的url中的“thumb180”换成“mw690”就可以将图换成高清。例如:
https://ww4.sinaimg.cn/thumb180/6960aeaaly1g23wtlad3sj21sc2dsu0x.jpg
https://ww4.sinaimg.cn/mw690/6960aeaaly1g23wtlad3sj21sc2dsu0x.jpg
爬虫代码
根据上面的思路,我们编写爬虫代码:
import requests
from lxml import etree
import re
headers = {
'cookie':''
}
url = 'https://weibo.com/a/hot/7549094253303809_1.html'
res = requests.get(url,headers=headers)
html = etree.HTML(res.text)
infos = html.xpath('//div[@class="UG_list_a"]')
for info in infos:
name = info.xpath('div[2]/a[2]/span/text()')[0]
content = info.xpath('h3/text()')[0].strip()
imgs = info.xpath('div[@class="list_nod clearfix"]/div/img/@src')
print(name,content)
i = 1
for img in imgs:
href = 'https:' + img.replace('thumb180','mw690')
print(href)
res_1 = requests.get(href,headers=headers)
fp = open('row_img/' + name + '+' + content + '+' + str(i) + '.jpg','wb')
fp.write(res_1.content)
i = i + 1
记得换上自己的cookie后就可以直接使用啦~
人脸识别API
之前我们就讲解过了人脸识别API的使用,这里把在讲解一遍。
首先,打开网址(http://ai.baidu.com/tech/face),登陆后立即使用,我们首先创建一个人脸识别的应用。api的使用说简单很简单(看文档就好了),说难也很难(大家的阅读能力在慢慢下降)。首先,我们看着文档(https://ai.baidu.com/docs#/Face-Detect-V3/top),一步步来。
接着我们通过API Key和Secret Key获取token:
import requests
ak = ''
sk = ''
host = 'https://aip.baidubce.com/oauth/2.0/token?grant_type=client_credentials&client_id={}&client_secret={}'.format(ak,sk)
res = requests.post(host)
print(res.text)
我们拿着token,来请求对应的网页就可以获取图片的内容了。我们拿张超越妹妹的图片做例子~
import base64
import json
token = ''
def get_img_base(file):
with open(file,'rb') as fp:
content = base64.b64encode(fp.read())
return content
request_url = "https://aip.baidubce.com/rest/2.0/face/v3/detect"
request_url = request_url + "?access_token=" + token
params = {
'image':get_img_base('test.jpg'),
'image_type':'BASE64',
'face_field':'age,beauty,gender'
}
res = requests.post(request_url,data=params)
result = res.text
json_result = json.loads(result)
code = json_result['error_code']
gender = json_result['result']['face_list'][0]['gender']['type']
beauty = json_result['result']['face_list'][0]['beauty']
print(code,gender,beauty)
### result 0 female 76.25
这里的token为前面请求得到的,params的参数中,图片需要base64编码~超越妹妹76.25,还算给力。
综合使用
最后,我们逐一请求我们保存的图片,获取小姐姐图片的分数(这里处理为1-10分),并分别存在不同的文件夹中。
import requests
import os
import base64
import json
import time
def get_img_base(file):
with open(file,'rb') as fp:
content = base64.b64encode(fp.read())
return content
file_path = 'row_img'
list_paths = os.listdir(file_path)
for list_path in list_paths:
img_path = file_path + '/' + list_path
# print(img_path)
token = '24.890f5b6340903be0642f9643559aa7a1.2592000.1557979582.282335-15797955'
request_url = "https://aip.baidubce.com/rest/2.0/face/v3/detect"
request_url = request_url + "?access_token=" + token
params = {
'image':get_img_base(img_path),
'image_type':'BASE64',
'face_field':'age,beauty,gender'
}
res = requests.post(request_url,data=params)
json_result = json.loads(res.text)
code = json_result['error_code']
if code == 222202:
continue
try:
gender = json_result['result']['face_list'][0]['gender']['type']
if gender == 'male':
continue
beauty = json_result['result']['face_list'][0]['beauty']
new_beauty = round(beauty/10,1)
print(img_path,new_beauty)
if new_beauty >= 8:
os.rename(os.path.join(file_path,list_path),os.path.join('8分',str(new_beauty) + '+' + list_path))
elif new_beauty >= 7:
os.rename(os.path.join(file_path,list_path),os.path.join('7分',str(new_beauty) + '+' + list_path))
elif new_beauty >= 6:
os.rename(os.path.join(file_path,list_path),os.path.join('6分',str(new_beauty) + '+' + list_path))
elif new_beauty >= 5:
os.rename(os.path.join(file_path,list_path),os.path.join('5分',str(new_beauty) + '+' + list_path))
else:
os.rename(os.path.join(file_path,list_path),os.path.join('其他分',str(new_beauty) + '+' + list_path))
time.sleep(1)
except KeyError:
pass
except TypeError:
pass
今日互动
代码下载:公众号后台回复【微博网红】,下载完整代码和高清图片。
公众号后台回复【入群】,加入学习交流群,2019年一起搞事情。