两阶段最小二乘法TSLS案例分析

两阶段最小二乘回归(2sls回归)是解决内生性问题的常用方法。上文中对两阶段最小二乘法做了基本介绍,本文将通过案例说明具体操作步骤。

1 背景

本案例引入Mincer(1958)关于工资与受教育年限研究的数据。案例数据中包括以下信息,如下表格:

数据共有12项,其中编号为1,5,7,8,12共五项并不在考虑范畴。

本案例研究‘受教育年限’对于‘Ln工资’的影响。明显的,从理论上可能出现‘双向因果关系’即‘受教育年限’很可能是内生变量。那么可考虑使用‘母亲受教育年限’和‘成绩’这两项数据作为工具变量。同时研究时纳入3个外生变量,分别是‘婚姻’,‘是否大城市‘和’当前单位工作年限’。使用两阶段最小二乘TSLS回归进行解决内生性问题。

本案例研究时,工具变量为2个,内生变量为1个,因而为过度识别,可以正常进行TSLS回归。


2 理论

两阶段最小二乘回归,其内部原理上共分为两次回归。第一次回归将内生变量与工具变量,外生变量进行回归,并且得到回归预测值Prediction;第二次回归将被解释变量与Prediction,外生变量进行回归,得到最终模型结果。第一次回归为中间过程值,SPSSAU并没有输出,如果有需要可自行使用线性回归或OLS回归进行即可。

  • 关于内生性的检验Durbin-Wu-Hausman检验,其用于检验是否真的为内生变量;如果说检验不通过(接受原假设),那么说明没有内生变量存在,可直接使用OLS回归即可。当然即使没有内生性,一般也可以使用TSLS回归,没有内生性问题时,OLS回归和TSLS回归结论通常一致;

  • 关于过度识别检验上,SPSSAU提供Sargan检验和Basmann检验(使用任意其一即可),原理上此过度识别检验仅在‘过度识别’时才会输出,即工具变量个数>内生变量个数时,才会输出。


3 操作

本案例分别将被解释变量,内生变量,工具变量和外生变量纳入对应的模型框中,如下:


4 SPSSAU输出结果

SPSSAU共输出6类表格,分别是研究变量类型表格,2sls模型分析结果表格,2sls模型分析结果-简化格式表格,模型汇总(中间过程)表格,Durbin-Wu-Hausman test外生性检验(test of exogeneity)和过度识别检验(overidentifying restrictions)。说明如下:


上一表格展示本次研究时涉及的各变量属性,包括被解释变量,内生变量,工具变量和外生变量组成情况。


上表格列出TSLS两阶段最小二乘回归的最终结果(第二阶段结果),首先模型通过Wald 卡方检验(Wald χ² =244.172,p=0.000<0.05),意味着模型有效。同时R方值为0.342,意味着内生和外生变量对于工资的解释力度为34.2%。具体查看内生和外生变量对于被解释变量‘工资’的影响情况来看:

受教育年限的回归系数值为0.112(p=0.000<0.01),意味着受教育年限会对工资产生显著的正向影响关系。

婚姻(已婚为1)的回归系数值为0.167(p=0.000<0.01),意味着相对未婚群体来讲,已婚群体的工资水平明显会更高。

是否大城市(1为大城市)的回归系数值为0.145(p=0.000<0.01),意味着相对来讲,大城市样本群体,他们的工资水平明显会更高。

当前单位工作年限的回归系数值为0.036(p=0.000<0.01),意味着当前单位工作年限会对工资产生显著的正向影响关系。

总结分析可知:受教育年限, 婚姻,是否大城市, 当前单位工作年限全部均会对工资产生显著的正向影响关系。


上表格展示模型的基础指标值,包括模型有效检验wald卡方值(此处提供wald卡方非F检验),R值,Root MSE等指标值。

Durbin-Wu-Hausman test用于检验解释变量X(即内生外量)是否均为外生变量(即是否不存在内生变量)

从上表可知,本次研究纳入的内生变量为‘受教育年限’,Wu-Hausman检验显示拒绝原假设(p=0.047<0.05),意味着‘所有解释变量均外生’这一假设不成立。即意味着‘受教育年限’是内生变量。同时也可使用Durbin检验,一般情况下使用Durbin-Wu-Hausman检验较多。


特别提示:

如果无法拒绝原假设,那么说明研究的内生变量并不是真正意义上的内生变量,那么此时可考虑直接使用OLS回归结果即可,但多数时候也可直接使用TSLS两阶段最小二乘的结果,似研究者专业理论知识综合而定。

过度识别检验用于检验工具变量是否为外生变量,本次研究涉及工具变量为2个,分别是‘母亲受教育年限’和‘成绩’。从上表可知,过度识别Sargan检验显示接受原假设(p=0.874>0.05),同时Basmann检验也显示接受原假设(p=0.874>0.05)。同说明无法拒绝‘工具变量外生性’这一假定,模型良好。

特别提示:

  • 过度识别检验用于判断‘工具变量的外生性’,SPSSAU提供Sargan和Basmann检验,使用其一即可

  • 工具变量个数>内生变量个数,即过度识别时,才会有效;如果恰好识别(工具变量个数=内生变量个数),此时无法输出检验值。


5 剖析

涉及以下几个关键点,分别如下:

  • 内生变量和外生变量,其二者均为解释变量,如果考虑内生性问题时才会将解释变量区分成内生变量和外生变量。

  • 模型有效性检验上,SPSSAU默认使用wald卡方检验而非F检验。


©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,634评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,951评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,427评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,770评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,835评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,799评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,768评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,544评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,979评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,271评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,427评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,121评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,756评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,375评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,579评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,410评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,315评论 2 352

推荐阅读更多精彩内容