反距离权重IDW算法解析与示例

在GIS和图像处理中插值算法很常用,散点状的数据面状化。
常用的插值方法包括:反距离权重插值法(IDW)、克里金插值法(Kriging)、双线性插值法等。

反距离权重插值法

反距离加权插值,(Inverse Distance Weight) ,也可以称为距离倒数乘方法。是指距离倒数乘方格网化方法是一个加权平均插值法,可以进行确切的或者圆滑的方式插值。

用左侧离散点生成右侧面状图

ArcGIS的解释:

反距离权重 (IDW) 插值显式假设:彼此距离较近的事物要比彼此距离较远的事物更相似。当为任何未测量的位置预测值时,反距离权重法会采用预测位置周围的测量值。与距离预测位置较远的测量值相比,距离预测位置最近的测量值对预测值的影响更大。反距离权重法假定每个测量点都有一种局部影响,而这种影响会随着距离的增大而减小。由于这种方法为距离预测位置最近的点分配的权重较大,而权重却作为距离的函数而减小,因此称之为反距离权重法。

核心概念就是,随着距离增大,预测点的值受到离散点的影响变小,也就是权重变小,如图所示



权重与反距离(数据点与预测位置之间)的 p 次幂成正比。因此,随着距离的增加,权重将迅速降低。权重下降的速度取决于 p 值。如果 p = 0,则表示权重不随距离减小,且因每个权重 λi 的值均相同,预测值将是搜索邻域内的所有数据值的平均值。随着 p 值的增大,较远数据点的权重将迅速减小。如果 p 值极大,则仅最邻近的数据点会对预测产生影响。


示例

最上面的图即为效果图
核心代码:

    //随机生成数据
    function randomPoint() {
      for (let i = 0; i < 10; i++) {
        var x = rn(width);
        var y = rn(height);
        var z = rn(255);
        datas.push([x, y, z]);
      }
    }

    //遍历像素点计算预测值
    function interpolateGrid(id) {
      for (let i = 0; i < width; i++) {
        for (let j = 0; j < height; j++) {
          var v = idw(i, j);
          createPixel(id, i, j, v);
        }
      }
    }

    //遍历离散点计算权重得出预测值
    function idw(x, y) {
      var sw = 0, zw = 0;
      datas.forEach(data => {
        var dx = data[0] - x;
        var dy = data[1] - y;
        var distance = Math.sqrt(dx * dx + dy * dy)
        var zValue = data[2];
        var w = 1.0 / Math.pow(distance, 2);
        sw += w;
        zw += w * zValue;
      })
      return zw / sw;
    }
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,456评论 5 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,370评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,337评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,583评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,596评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,572评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,936评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,595评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,850评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,601评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,685评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,371评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,951评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,934评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,167评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,636评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,411评论 2 342

推荐阅读更多精彩内容