Android SDK开发

目前我们的应用内使用了 ArcFace 的人脸检测功能,其他的我们并不了解,所以这里就和大家分享一下我们的集成过程和一些使用心得

集成
ArcFace FD 的集成过程非常简单
在 ArcFace FD 的文档上有说明支持的系统为 5.0 及以上系统,但其实在 4.4 系统上也是可以跑的,

if (engine == null) { // && Build.VERSION.SDK_INT > Build.VERSION_CODES.LOLLIPOP) {
    try {
        engine = new AFD_FSDKEngine();
        AFD_FSDKError err = engine.AFD_FSDK_InitialFaceEngine(
                "XXXX",
                "XXXX",
                AFD_FSDKEngine.AFD_OPF_0_HIGHER_EXT, 12, 3);
        if (err.getCode() != 0) {
            engine.AFD_FSDK_UninitialFaceEngine();
            engine = null;
        }
    } catch (Exception e) {
        e.printStackTrace();
        engine = null;
    }
}

我觉得 ArcFace 的优势除了多角度检测之外,另外一个是他的每次检测并不是独立,即这一次的检测结果会指导下一次的检测 (我猜测的->_->)

所以 ArcFace 在检测到人脸之后,识别的时间会大幅减少,而 Seeta FD 的检测每次都是独立的,所以在无人脸的情况下,Seeta 的检测速度要快于 ArcFace, 但是检测到人脸之后,因为应用整体的计算量增加,导致 Seeta 的检测速度降低的非常明显,大大慢于 ArcFace, (所以二者是不是可以结合一下...)

AFD_FSDKError err = engine.AFD_FSDK_StillImageFaceDetection(
        data, width, height, AFD_FSDKEngine.CP_PAF_NV21, result);

优化
不得不说 ArcFace FD 的错误率是有待优化的,虽然 ArcFace 没有提供任何可以调节的参数,但是还是可以稍微优化一下!

因为从摄像头出来的 yuv 数据是横向的,而 ArcFace 只有 AFD_OPF_0_HIGHER_EXT 这个扩展选项,优先检测 0 度方向, 但是这个方向一般是没有人脸的,所以如果直接进行检测,我们觉得这个可能会增加检测的错误率(猜的->_->),所以处理方法是将 yuv 旋转到手机竖屏方向(当然这个操作不是直接由 CPU 来处理,而是从 Camera 的外部纹理上开始做操作)再拿去检测,这样会减少一点错误率(从用户反馈得出),虽然错误率依然很高(特别对于带栅格的物体)希望虹软能继续优化!

另外一个是目前 ArcFace 还没有支持 Android 8.x 系统,所以这种情况下,我们会启用备选的其他方案来进行人脸检测!

最后希望虹软能把 ArcFace 越做越好 _ 因为只有产品足够好才会不断的有人为你做免费宣传
查看更多分享戳☞ArcFace Android 人脸检测集成分享

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 221,135评论 6 514
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 94,317评论 3 397
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 167,596评论 0 360
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 59,481评论 1 296
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,492评论 6 397
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 52,153评论 1 309
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,737评论 3 421
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,657评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 46,193评论 1 319
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,276评论 3 340
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,420评论 1 352
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 36,093评论 5 349
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,783评论 3 333
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,262评论 0 23
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,390评论 1 271
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,787评论 3 376
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,427评论 2 359

推荐阅读更多精彩内容

  • From:郭霖 前言 目前更多开发者热衷于应用开发,极少数的开发者才有机会从事SDK开发工作,而市面上关于SDK开...
    胡二囧阅读 1,031评论 3 7
  • 自从前段时间离职后,因为个人的事情一直没有选择再工作,也导致原有的文章并没有按时产出.最近个人的事情整理的也差不多...
    涅槃1992阅读 5,489评论 18 61
  • 这段时间接手了**魔盒的支付模块和供三方应用调用的支付SDK模块,这才发现SDK开发跟应用版本开发的理念不太相同。...
    溪西阅读 6,920评论 4 21
  • 因为学游泳的时候被淹过两次,所以深知被水呛的滋味,说什么都是不肯再下水的。 今年的寒假被朋友组团带上...
    美生活阅读 306评论 0 0
  • 梦穴(目录) 梦穴(一) “这里是一栋废弃的老医院。”女人低声说道,“你知道十五年前那件骇人听闻的医生倒卖病人器官...
    张蒸发阅读 440评论 0 0