Spark笔记(4):计算dataframe中两列的相关系数

spark


皮尔森、斯皮尔曼(pearson spearman)计算相关系数

import org.apache.spark.mllib.stat.Statistics

val df1 = sql("select new_rank_level,old_rank_level from ad_tmp.xxx")
val df_real = df1.select("old_rank_level","new_rank_level")
val rdd_real = df_real.rdd.map(x=>(x(0).toString.toDouble ,x(1).toString.toDouble ))
val label = rdd_real.map(x=>x._1.toDouble )
val feature = rdd_real.map(x=>x._2.toDouble )
 
val cor_pearson:Double = Statistics.corr(label, feature, "pearson")
println(cor_pearson)
0.23997483383749665 
 
val cor_spearman:Double = Statistics.corr(label, feature, "spearman")
println(cor_spearman)
cor_spearman: Double = 0.23997567905723607  
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容