0002-keras自定义层+模型保存后自定义层的加载

自定义Position层

import keras
from keras import backend as K
import tensorflow as tf

class Position_Embedding(keras.layers.Layer):    
    def __init__(self, size=None, mode='sum', **kwargs):
        self.size = size 
        self.mode = mode
        super(Position_Embedding, self).__init__(**kwargs)        
    def call(self, x):
        if (self.size == None) or (self.mode == 'sum'):
            self.size = int(x.shape[-1])
        position_j = 1. / K.pow(  10000., 2 * K.arange(self.size / 2, dtype='float32') / self.size  )
        position_j = K.expand_dims(position_j, 0)
        
        position_i = K.cumsum(K.ones_like(x[:,:,0]), 1)-1 
        position_i = K.expand_dims(position_i, 2)
        position_ij = K.dot(position_i, position_j)
        position_ij = K.concatenate([K.cos(position_ij), K.sin(position_ij)], 2)
        if self.mode == 'sum':
            return position_ij + x
        elif self.mode == 'concat':
            return K.concatenate([position_ij, x], 2)        
    def compute_output_shape(self, input_shape):
        if self.mode == 'sum':
            return input_shape
        elif self.mode == 'concat':
            return (input_shape[0], input_shape[1], input_shape[2]+self.size)

定义Attention层

class Attention(keras.layers.Layer):
    def __init__(self, nb_head, size_per_head, **kwargs):
        self.nb_head = nb_head
        self.size_per_head = size_per_head
        self.output_dim = nb_head*size_per_head
        super(Attention, self).__init__(**kwargs)

    def build(self, input_shape):
        self.WQ = self.add_weight(name='WQ',shape=(int(input_shape[0][-1]), self.output_dim),initializer='glorot_uniform',
                                  trainable=True)
        self.WK = self.add_weight(name='WK',shape=(int(input_shape[1][-1]), self.output_dim),initializer='glorot_uniform',
                                  trainable=True)
        self.WV = self.add_weight(name='WV',shape=(int(input_shape[2][-1]), self.output_dim),initializer='glorot_uniform',
                                  trainable=True)
        super(Attention, self).build(input_shape)
  
    def Mask(self, inputs, seq_len, mode='mul'):
        if seq_len == None:
            return inputs
        else:
            mask = K.one_hot(seq_len[:,0], K.shape(inputs)[1])
            mask = 1 - K.cumsum(mask, 1)
            for _ in range(len(inputs.shape)-2):
                mask = K.expand_dims(mask, 2)
            if mode == 'mul':
                return inputs * mask
            if mode == 'add':
                return inputs - (1 - mask) * 1e12
                
    def call(self, x):
        
        if len(x) == 3:
            Q_seq,K_seq,V_seq = x
            Q_len,V_len = None,None
        elif len(x) == 5:
            Q_seq,K_seq,V_seq,Q_len,V_len = x
            
        Q_seq = K.dot(Q_seq, self.WQ)
        Q_seq = K.reshape(Q_seq, (-1, K.shape(Q_seq)[1], self.nb_head, self.size_per_head))
        Q_seq = K.permute_dimensions(Q_seq, (0,2,1,3))
        
        K_seq = K.dot(K_seq, self.WK)
        K_seq = K.reshape(K_seq, (-1, K.shape(K_seq)[1], self.nb_head, self.size_per_head))
        K_seq = K.permute_dimensions(K_seq, (0,2,1,3))
        
        V_seq = K.dot(V_seq, self.WV)
        V_seq = K.reshape(V_seq, (-1, K.shape(V_seq)[1], self.nb_head, self.size_per_head))
        V_seq = K.permute_dimensions(V_seq, (0,2,1,3))
        
        A = K.batch_dot(Q_seq, K_seq, axes=[3,3]) / self.size_per_head**0.5
        A = K.permute_dimensions(A, (0,3,2,1))
        
        A = self.Mask(A, V_len, 'add')
        A = K.permute_dimensions(A, (0,3,2,1))    
        A = K.softmax(A)
        
        
        O_seq = K.batch_dot(A, V_seq, axes=[3,2])
        O_seq = K.permute_dimensions(O_seq, (0,2,1,3))
        O_seq = K.reshape(O_seq, (-1, K.shape(O_seq)[1], self.output_dim))
        O_seq = self.Mask(O_seq, Q_len, 'mul')
        
        return O_seq
        
    def compute_output_shape(self, input_shape):
        return (input_shape[0][0], input_shape[0][1], self.output_dim)     
    
    def get_config(self):        
        config = {"nb_head":self.nb_head,"size_per_head":self.size_per_head}
        base_config = super(Attention,self).get_config()
        return dict(list(base_config.items()) + list(config.items()))

下面展示模型保存后自定义层的调用

model = models.load_model("/data/user//model.h5",custom_objects={'Position_Embedding':Position_Embedding,"Attention":Attention})
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,711评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,079评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,194评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,089评论 1 286
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,197评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,306评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,338评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,119评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,541评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,846评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,014评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,694评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,322评论 3 318
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,026评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,257评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,863评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,895评论 2 351

推荐阅读更多精彩内容

  • Swift1> Swift和OC的区别1.1> Swift没有地址/指针的概念1.2> 泛型1.3> 类型严谨 对...
    cosWriter阅读 11,094评论 1 32
  • 这是16年5月份编辑的一份比较杂乱适合自己观看的学习记录文档,今天18年5月份再次想写文章,发现简书还为我保存起的...
    Jenaral阅读 2,739评论 2 9
  • 一、简历准备 1、个人技能 (1)自定义控件、UI设计、常用动画特效 自定义控件 ①为什么要自定义控件? Andr...
    lucas777阅读 5,193评论 2 54
  • 可以说《刻意练习》这本书颠覆了俺的认知… 因为在听这本书之前我一直的理念就是,凡是在某一方面有所成就的。要么是天赋...
    波泥唐阅读 293评论 0 2
  • 午睡刚醒,赵娜定了定神,瞬间精神抖擞,翻身下床。这几天搬新房,家里的衣服、书本都要整理出来。 一想到这套新房,赵娜...
    萤烛之尚阅读 727评论 8 17