阅读者三篇Android绘制文章,会让你对理解Android绘制有帮助:
- Android Render(一)Activity窗口构成和绘制解析
- Android Render(二)7.1源码硬件加速下draw绘制流程分析
- Android Render(三)supportVersion 27.0.0源码RecyclerView绘制流程解析
分析从draw(Canvas canvas)和draw(Canvas canvas, ViewGroup parent, long drawingTime)两个方法入手:
draw(Canvas canvas)和draw(Canvas canvas, ViewGroup parent, long drawingTime)方法从表面看来就是接受的参数不一样, 其实二期有一个先后顺序,从属关系,但是也要分情况,就看当前的View是不是顶级的DecorView了,就是说一个View有没有parent view,View的两个draw方法是有不一样的调用顺序的,当然只有DecorView是顶级的View,DecorView没有parent view。
正常情况下,draw(Canvas canvas, ViewGroup parent, long drawingTime)方法被当前view的parentView调用,在draw(Canvas canvas, ViewGroup parent, long drawingTime)方法中会根据是否支持硬件加速来走不通的流程最终都会调用到
draw(Canvas canvas)方法来做正在的绘制,draw(Canvas canvas)方法中会调用到dispatchDraw(canvas)方法,来向下分发绘制,dispatchDraw(canvas)方法中会调用draw(Canvas canvas, ViewGroup parent, long drawingTime)。绘制就层层向下传递。
但是作为顶级的
DecorView就不同了,ViewRootImpl调用DecorView的draw(Canvas canvas)方法直接开启整个view tree的绘制,DecorView的draw(Canvas canvas)方法中调用dispatchDraw(canvas)开始向下分发绘制。一层层传到到view tree的最底层。

整个View Hierarchy真正绘制开始是从DecorView的draw(Canvas canvas)方法开始的,下面描述一下Activity的启动到调用到DecorView的draw(Canvas canvas)方法的流程:
/**1*/ ApplicationThread的onTransact方法接收到SystemServer进程的SCHEDULE_LAUNCH_ACTIVITY_TRANSACTION启动Activity的Binder信息
↓
/**2*/ ApplicationThread.scheduleLaunchActivity() //
↓
/**3*/ ActivityThread.scheduleLaunchActivity() //安排启动Activity
↓
/**4*/ ActivityThread.handleLaunchActivity() //处理启动Activity
↓
/**5*/ ActivityThread.handleResumeActivity() // Activity 的Resume会使DecorView跟ViewRootImpl关联
↓
/**6*/ WindowManagerGlobal.addView() //全局保存窗口的信息
↓
/**7*/ ViewRootImpl.setView() //使DecorView和ViewRootImpl关联并绘制界面
↓
/**8*/ ViewRootImpl.requestLayout() //请求绘制ViewTree
↓
/**9*/ ViewRootImpl.scheduleTraversals() // 安排遍历
↓
/**10*/ ViewRootImpl.doTraversal() //
↓
/**11*/ ViewRootImpl.performTraversals() //执行遍历 会根据情况调用relayoutWindow performMeasure performLayout performDraw 等方法 这四个方法跟绘制是紧密相关的
↓
/**12*/ ViewRootImpl.performDraw() //执行绘制
↓
/**13*/ ViewRootImpl.draw(boolean fullRedrawNeeded)//区分是否支持硬件加速来走不同的绘制流程
↓
.........
↓
/**14*/ DecorView.draw(Canvas canvas) //不管走不走硬件加速都会调到这里
整个界面的绘制从 DecorView.draw(Canvas canvas)方法开始一触即发!
一、draw(canvas,parent,drawingTime)和draw(canvas)作用不同
public class View implements Drawable.Callback, KeyEvent.Callback,
AccessibilityEventSource {
/**
* This method is called by ViewGroup.drawChild() to have each child view draw itself.
* 此方法是被父控件ViewGroup.drawChild()调用的
* drawChild()方法又是被ViewGroup中的dispatchDraw(Canvas canvas)方法调用的
* This is where the View specializes rendering behavior based on layer type,
* and hardware acceleration.
*/
boolean draw(Canvas canvas, ViewGroup parent, long drawingTime) {
final boolean hardwareAcceleratedCanvas = canvas.isHardwareAccelerated();
/* If an attached view draws to a HW canvas, it may use its RenderNode + DisplayList.
*
* If a view is dettached, its DisplayList shouldn't exist. If the canvas isn't
* HW accelerated, it can't handle drawing RenderNodes.
*/
//判断当前View是否支持硬件加速绘制
boolean drawingWithRenderNode = mAttachInfo != null
&& mAttachInfo.mHardwareAccelerated
&& hardwareAcceleratedCanvas;
......略
//硬件加速绘制用到的绘制节点
RenderNode renderNode = null;
//cpu绘制用到的绘制缓存
Bitmap cache = null;
//获取当前View的绘制类型 LAYER_TYPE_NONE LAYER_TYPE_SOFTWARE LAYER_TYPE_HARDWARE
int layerType = getLayerType(); // TODO: signify cache state with just 'cache' local
if (layerType == LAYER_TYPE_SOFTWARE || !drawingWithRenderNode) { //如果是cpu绘制类型
if (layerType != LAYER_TYPE_NONE) {
// If not drawing with RenderNode, treat HW layers as SW
layerType = LAYER_TYPE_SOFTWARE;
//开始cpu绘制缓存构建
buildDrawingCache(true);
}
//获得cpu绘制缓存结果 存储在Bitmap中
cache = getDrawingCache(true);
}
if (drawingWithRenderNode) { //支持硬件加速
// Delay getting the display list until animation-driven alpha values are
// set up and possibly passed on to the view
//更新gpu绘制列表 保存在RenderNode中
renderNode = updateDisplayListIfDirty();
if (!renderNode.isValid()) {
// Uncommon, but possible. If a view is removed from the hierarchy during the call
// to getDisplayList(), the display list will be marked invalid and we should not
// try to use it again.
renderNode = null;
//gpu绘制失败标识
drawingWithRenderNode = false;
}
}
......略
//cpu绘制成功并且gpu绘制失败了
final boolean drawingWithDrawingCache = cache != null && !drawingWithRenderNode;
......略
if (!drawingWithDrawingCache) { //走gpu绘制
if (drawingWithRenderNode) { //支持gpu绘制
mPrivateFlags &= ~PFLAG_DIRTY_MASK;
//gpu绘制收集到的DisplayList
((DisplayListCanvas) canvas).drawRenderNode(renderNode);
} else { //走gpu绘制又突然不支持gpu绘制(可能是极限情况下)
// Fast path for layouts with no backgrounds
if ((mPrivateFlags & PFLAG_SKIP_DRAW) == PFLAG_SKIP_DRAW) {
mPrivateFlags &= ~PFLAG_DIRTY_MASK;
//没有内容不需要绘制自己,就直接向下分发绘制子View
dispatchDraw(canvas);
} else {
//绘制自己后再分发绘制子View
draw(canvas);
}
}
} else if (cache != null) { //走cpu绘制且cpu绘制缓存不为null
......略
//把存储cpu绘制缓存的Bitmap用canvas走cpu绘制(skia渲染引擎)
canvas.drawBitmap(cache, 0.0f, 0.0f, cachePaint);
}
......略
return more;
}
/**
* Manually render this view (and all of its children) to the given Canvas.
* The view must have already done a full layout before this function is
* called. When implementing a view, implement
* {@link #onDraw(android.graphics.Canvas)} instead of overriding this method.
* If you do need to override this method, call the superclass version.
*
* @param canvas The Canvas to which the View is rendered.
*/
@CallSuper
public void draw(Canvas canvas) {
final int privateFlags = mPrivateFlags;
final boolean dirtyOpaque = (privateFlags & PFLAG_DIRTY_MASK) == PFLAG_DIRTY_OPAQUE &&
(mAttachInfo == null || !mAttachInfo.mIgnoreDirtyState);
mPrivateFlags = (privateFlags & ~PFLAG_DIRTY_MASK) | PFLAG_DRAWN;
int saveCount;
// Step 1 绘制背景
if (!dirtyOpaque) {
drawBackground(canvas);
}
//Step 2,必要时,保存画布的图层为褪色做准备
final int viewFlags = mViewFlags;
boolean horizontalEdges = (viewFlags & FADING_EDGE_HORIZONTAL) != 0;
boolean verticalEdges = (viewFlags & FADING_EDGE_VERTICAL) != 0;
if (!verticalEdges && !horizontalEdges) {
// Step 3, 绘制View自身内容
if (!dirtyOpaque) onDraw(canvas);
//Step 4, 绘制子View的内容
dispatchDraw(canvas);
// Overlay is part of the content and draws beneath Foreground
//Step 5, 必要时,绘制褪色边缘并恢复图层,通过 getOverlay().add(drawable); 添加图片什么的
if (mOverlay != null && !mOverlay.isEmpty()) {
mOverlay.getOverlayView().dispatchDraw(canvas);
}
// Step 6, 绘制装饰(列如滚动条)
onDrawForeground(canvas);
// we're done...
return;
}
......略
}
可以看到View中的 updateDisplayListIfDirty()方法是gpu绘制的关键,buildDrawingCache()方法是cpu绘制的关键。
updateDisplayListIfDirty()和buildDrawingCache()方法都会调用到View的draw(canvas)方法,但是updateDisplayListIfDirty()方法中给draw(canvas)传的是DisplayListCanvas参数,使其具备HWUI的功能。buildDrawingCache()方法中给draw(canvas)方法传入的是普通的Canvas。
也可以很清楚滴看到,对于我们开发者来说,draw(Canvas canvas, ViewGroup parent, long drawingTime)方法就是一个View的绘制入口,从这个方法中决定了走cpu绘制还是gpu绘制。
draw(Canvas canvas)方法是具体的绘制工作,如果是gpu硬件加速绘制,则使用DisplayListCanvas画布绘制,会把绘制DisplayList保存在绘制节点RenderNode中。如果是CPU软绘制,则使用普通的Canvas画布绘制,把绘制缓存保存在一个Bitmap中,最后会使用canvas.drawBitmap()方法使用skia渲染引擎cpu绘制缓存Bitmap中的数据。
二、顶级DecorView硬件加速调用draw(canvas)
注意:
DecorView其实是一个FrameLayout,FrameLayout是一个ViewGroup,ViewGroup是一个继承View的抽象类,draw(canvas)方法只在View类中有实现,所以调用DecorView的draw(canvas)其实最终调用的是View的draw(canvas)方法。
上面已经说了,DecorView是顶级View,它的draw(canvas)方法是绘制的开端,那么在硬件加速下ViewRootImpl是怎么调用到DecorView的draw(canvas)的呢?
得从ViewRootImpl的draw(boolean fullRedrawNeeded)方法开始分析:
/***********************************************************************
/**1*/ ApplicationThread的onTransact方法接收到SystemServer进程的SCHEDULE_LAUNCH_ACTIVITY_TRANSACTION启动Activity的Binder信息
↓
/**2*/ ApplicationThread.scheduleLaunchActivity() //
↓
/**3*/ ActivityThread.scheduleLaunchActivity() //安排启动Activity
↓
/**4*/ ActivityThread.handleLaunchActivity() //处理启动Activity
↓
/**5*/ ActivityThread.handleResumeActivity() // Activity 的Resume会使DecorView跟ViewRootImpl关联
↓
/**6*/ WindowManagerGlobal.addView() //全局保存窗口的信息
↓
/**7*/ ViewRootImpl.setView() //使DecorView和ViewRootImpl关联并绘制界面
↓
/**8*/ ViewRootImpl.requestLayout() //请求绘制ViewTree
↓
/**9*/ ViewRootImpl.scheduleTraversals() // 安排遍历
↓
/**10*/ ViewRootImpl.doTraversal() //
↓
/**11*/ ViewRootImpl.performTraversals() //执行遍历 会根据情况调用relayoutWindow performMeasure performLayout performDraw 等方法 这四个方法跟绘制是紧密相关的
↓
/**12*/ ViewRootImpl.performDraw() //执行绘制
↓
/**13*/ 区分是否支持硬件加速来走不同的绘制流程*********************************/
private void draw(boolean fullRedrawNeeded) {
......略
if (!dirty.isEmpty() || mIsAnimating || accessibilityFocusDirty) { //支持硬件加速并且需要绘制
if (mAttachInfo.mHardwareRenderer != null && mAttachInfo.mHardwareRenderer.isEnabled()) {
......略
//1 硬件加速调DecorView 的draw(canvas)方法的关键
mAttachInfo.mHardwareRenderer.draw(mView, mAttachInfo, this);
} else {
......略
//2 非硬件加速调DecorView的draw(canvas)方法的关键
if (!drawSoftware(surface, mAttachInfo, xOffset, yOffset, scalingRequired, dirty)) {
return;
}
}
}
......略
}
}
ThreadedRenderer是5.0上为每个进程新增了一个RenderThread线程,既一个渲染线程,RenderThread线程可以保证在主线程阻塞的情况下动画执行依然流畅顺滑。就是一个异步绘制的处理线程。
更多请参看:
http://www.jianshu.com/p/bc1c1d2fadd1
http://blog.csdn.net/guoqifa29/article/details/45131099
我们先分析硬件加速调用DecorView的draw(canvas)方法,先看mAttachInfo.mHardwareRenderer.draw(mView, mAttachInfo, this)里面的流程:
/**
*5.0新增的渲染线程
*/
public final class ThreadedRenderer {
......略
/**
* Draws the specified view.
*
* @param view The view to draw.
* @param attachInfo AttachInfo tied to the specified view.
* @param callbacks Callbacks invoked when drawing happens.
*/
void draw(View view, AttachInfo attachInfo, HardwareDrawCallbacks callbacks) {
//1 圈起来 终点 要考的 ,其实就是更新`DecorView`的`DisplayList`
updateRootDisplayList(view, callbacks);
}
//其实就是更新`DecorView`的`DisplayList`
private void updateRootDisplayList(View view, HardwareDrawCallbacks callbacks) {
//更新`DecorView`的`DisplayList`
updateViewTreeDisplayList(view);
if (mRootNodeNeedsUpdate || !mRootNode.isValid()) {
//1 获取一个DisplayListCanvas画布
DisplayListCanvas canvas = mRootNode.start(mSurfaceWidth, mSurfaceHeight);
try {
final int saveCount = canvas.save();
canvas.translate(mInsetLeft, mInsetTop);
callbacks.onHardwarePreDraw(canvas);
canvas.insertReorderBarrier();
//2 绘制获取到的DecorView的RenderNode
//view.updateDisplayListIfDirty()其实是调用的DecorView的updateDisplayListIfDirty方法,
//通过层层调用updateDisplayListIfDirty方法最终会获取整个view tree的绘制节点`RenderNode`
canvas.drawRenderNode(view.updateDisplayListIfDirty());
canvas.insertInorderBarrier();
callbacks.onHardwarePostDraw(canvas);
canvas.restoreToCount(saveCount);
mRootNodeNeedsUpdate = false;
} finally {
//3 整个View tree绘制结束后回收资源
mRootNode.end(canvas);
}
}
}
......略
}
从上面可以看到 更新DecorView的DisplayList而调用 updateViewTreeDisplayList(view)方法,这个方法请看:
/**
*5.0新增的渲染线程
*/
public final class ThreadedRenderer {
......略
private void updateViewTreeDisplayList(View view) {
view.mPrivateFlags |= View.PFLAG_DRAWN;
view.mRecreateDisplayList = (view.mPrivateFlags & View.PFLAG_INVALIDATED)
== View.PFLAG_INVALIDATED;
view.mPrivateFlags &= ~View.PFLAG_INVALIDATED;
//其实也是更新DecorView的DisplayList而调用view.updateDisplayListIfDirty()方法
view.updateDisplayListIfDirty();
view.mRecreateDisplayList = false;
}
......略
}
看到这里那么可以知道,硬件加速的情况下,DecorView的updateDisplayListIfDirty方法是关键,也是从这里调用到DecorView的的draw(canvas)方法开启绘制的,请看源代码:
public class View implements Drawable.Callback, KeyEvent.Callback,
AccessibilityEventSource {
......略
/**
* 更新一个View的绘制DisplayList保存在RenderNode返回
* 返回的RenderNode是被ThreadedRenderer线程的drawRenderNode(RenderNode)方法绘制的
* Gets the RenderNode for the view, and updates its DisplayList (if needed and supported)
* @hide
*/
@NonNull
public RenderNode updateDisplayListIfDirty() {
final RenderNode renderNode = mRenderNode;
......略
//从renderNode中获取一个DisplayListCanvas
final DisplayListCanvas canvas = renderNode.start(width, height);
canvas.setHighContrastText(mAttachInfo.mHighContrastText);
try {
if (layerType == LAYER_TYPE_SOFTWARE) { //为CPU绘制draw(canvas)方法
buildDrawingCache(true); //创建CPU绘制缓存会调用到View的
Bitmap cache = getDrawingCache(true); //保存CPU绘制缓存
if (cache != null) {
canvas.drawBitmap(cache, 0, 0, mLayerPaint); //skia绘制收集到的Bitmap缓存数据
}
} else { //为硬件加速GPU绘制
computeScroll();
canvas.translate(-mScrollX, -mScrollY);
mPrivateFlags |= PFLAG_DRAWN | PFLAG_DRAWING_CACHE_VALID;
mPrivateFlags &= ~PFLAG_DIRTY_MASK;
// Fast path for layouts with no backgrounds
if ((mPrivateFlags & PFLAG_SKIP_DRAW) == PFLAG_SKIP_DRAW) {
dispatchDraw(canvas); //View本身不需要绘制 直接分发给子View绘制
if (mOverlay != null && !mOverlay.isEmpty()) {
mOverlay.getOverlayView().draw(canvas);
}
} else {
//使用DisplayListCanvas绘制,需要的绘制会保存在DisplayList
draw(canvas);
}
}
} finally {
renderNode.end(canvas); //回收资源
setDisplayListProperties(renderNode);
}
} else {
mPrivateFlags |= PFLAG_DRAWN | PFLAG_DRAWING_CACHE_VALID;
mPrivateFlags &= ~PFLAG_DIRTY_MASK;
}
return renderNode; //返回保存有GPU绘制数据DisplayList的绘制节点renderNode
}
......略
}
可以看到在View的updateDisplayListIfDirty方法中,支持硬件加速的情况下准备好RenderNode和DisplayListCanvas后直接调用了View的draw(canvas)方法。
总结流程:
//前提是需要支持硬件加速
ViewRootImpl.draw(boolean fullRedrawNeeded)
↓
ThreadedRenderer.draw(view,attachInfo,hardwareDrawCallbacks)
↓
ThreadedRenderer.updateRootDisplayList(view, callbacks)
↓
DecorView.updateDisplayListIfDirty()
↓
DecorView.draw(canvas)
三、顶级DecorView非硬件加速调用draw(canvas)
从上面的ViewRootImpl的draw(boolean fullRedrawNeeded)方法中可以看到,如果是CPU绘制,就会走drawSoftware()方法。那么我们看一下drawSoftware()中是怎么调到DecorView的draw(canvas)方法的:
ViewRootImpl``drawSoftware()方法:
/**
* @return true if drawing was successful, false if an error occurred
*/
private boolean drawSoftware(Surface surface, AttachInfo attachInfo, int xoff, int yoff,
boolean scalingRequired, Rect dirty) {
// Draw with software renderer.
final Canvas canvas;
......略
//从Surface中获取一个普通的Canvas
canvas = mSurface.lockCanvas(dirty);
......略
//调用DecorView的draw(canvas)方法
mView.draw(canvas);
......略
return true;
}
总结流程:
//前提是不支持硬件加速
ViewRootImpl.draw(boolean fullRedrawNeeded)
↓
ViewRootImpl.drawSoftware(surface, mAttachInfo, xOffset, yOffset, scalingRequired, dirty)
↓
DecorView.draw(canvas)
DecorView的draw(canvas)方法调用总结:
DecorView作为顶级View的存在,它的绘制是由ViewRootImpl判断是CPU还是GPU绘制然后调用DecorView的draw(canvas)方法,开启整个界面的绘制。
其余的View,都有是自己的父控件调用
draw(canvas,parent,drawingTime)方法,在draw(canvas,parent,drawingTime)方法中判断当前View是CPU还是GPU绘制然后调用draw(canvas)。
四、非顶级View硬件加速draw(canvas, parent, drawingTime)调用draw(Canvas canvas)
上面我已经说了,整个界面的绘制是从DecorView的draw(canvas)方法开始,普通View的绘制是从draw(canvas, parent, drawingTime)开始。
View的draw(canvas, parent, drawingTime)、draw(Canvas canvas)和updateDisplayListIfDirty()三个方法我这里就不粘贴了,上已经有了,直接给出流程吧:
//GPU绘制
Vew.draw(Canvas canvas, ViewGroup parent, long drawingTime)
↓
Vew.updateDisplayListIfDirty()
↓
Vew.draw(displayListCanvas)
五、非顶级View非硬件加速draw(canvas, parent, drawingTime)调用draw(Canvas canvas)
先给出CPU绘制流程:
//CPU绘制
Vew.draw(Canvas canvas, ViewGroup parent, long drawingTime)
↓
Vew.buildDrawingCache(boolean autoScale)
↓
Vew.buildDrawingCacheImpl(boolean autoScale)
↓
Vew.draw(displayListCanvas)
draw(canvas, parent, drawingTime)方法调用到buildDrawingCache在上面的代码中可以看到,这里就看一下buildDrawingCache和buildDrawingCacheImpl方法:
public class View implements Drawable.Callback, KeyEvent.Callback,
AccessibilityEventSource {
......略
public void buildDrawingCache(boolean autoScale) {
if ((mPrivateFlags & PFLAG_DRAWING_CACHE_VALID) == 0 || (autoScale ?
mDrawingCache == null : mUnscaledDrawingCache == null)) {
if (Trace.isTagEnabled(Trace.TRACE_TAG_VIEW)) {
Trace.traceBegin(Trace.TRACE_TAG_VIEW,
"buildDrawingCache/SW Layer for " + getClass().getSimpleName());
}
try {
//执行CPU绘制缓存创建
buildDrawingCacheImpl(autoScale);
} finally {
Trace.traceEnd(Trace.TRACE_TAG_VIEW);
}
}
}
......略
/**
* private, internal implementation of buildDrawingCache, used to enable tracing
*/
private void buildDrawingCacheImpl(boolean autoScale) {
......略
//保存CPU绘制缓存的Bitmap
Bitmap bitmap = autoScale ? mDrawingCache : mUnscaledDrawingCache;
......略
if (bitmap == null || bitmap.getWidth() != width || bitmap.getHeight() != height) {
......略
try {
//如果缓存Bitmap为空就重新创建和赋值
bitmap = Bitmap.createBitmap(mResources.getDisplayMetrics(),
width, height, quality);
bitmap.setDensity(getResources().getDisplayMetrics().densityDpi);
if (autoScale) {
mDrawingCache = bitmap;
} else {
mUnscaledDrawingCache = bitmap;
}
if (opaque && use32BitCache) bitmap.setHasAlpha(false);
} catch (OutOfMemoryError e) {
......略
}
clear = drawingCacheBackgroundColor != 0;
}
Canvas canvas;
if (attachInfo != null) { //处理Canvas
canvas = attachInfo.mCanvas;
if (canvas == null) {
canvas = new Canvas();
}
//canvas的Bitmap设置为我们创建的缓存Bitmap
canvas.setBitmap(bitmap);
......略
} else {
// This case should hopefully never or seldom happen
canvas = new Canvas(bitmap);
}
......略
// Fast path for layouts with no backgrounds
if ((mPrivateFlags & PFLAG_SKIP_DRAW) == PFLAG_SKIP_DRAW) {
mPrivateFlags &= ~PFLAG_DIRTY_MASK;
dispatchDraw(canvas); //自己不需要绘制,直接分发子View绘制
if (mOverlay != null && !mOverlay.isEmpty()) {
mOverlay.getOverlayView().draw(canvas);
}
} else {
//自己需要绘制,然后再分发子View绘制,所有的绘制都会画在缓存Bitmap上面
draw(canvas);
}
......略
}
......略
}
绘制总结:
不管是支持还是不支持硬件加速,都会调用到View的draw(canvas)方法。
只是硬件加速的情况下为DisplayListCanvas画布,得到的DisplayList数据保存在每一个View的绘制节点RenderNode中,最后交给DisplayListCanvas的drawRenderNode(renderNode)方法处理渲染操作。
非硬件加速的情况下,会把所有的绘制缓存数据保存到一个缓存Bitmap中,然后由Canvas.drawBitmap(cache, 0.0f, 0.0f, mLayerPaint)负责把数据交给skia渲染。
DisplayList构建分析请看:http://www.jianshu.com/p/7bf306c09c7e
整体测量、定位、绘制流程总结总结:
其实draw流程相对于Measure和Layout来说特殊一些,为什么这么说?如果你了解view的整个流程就知道,Measure和Layout流程在View和ViewGroup这两个基本控件中都没有具体实现,而View的绘制在View这个基本的类中都实现了,而且在View的raw(Canvas canvas, ViewGroup parent, long drawingTime) 方法中区分了cpu和gpu绘制来走不同的流程。View的draw(Canvas canvas)方法实现了具体的6个绘制步骤,ViewGroup中的dispatchDraw(Canvas canvas)方法实现了具体的子View的绘制分发。
为什么是这样?
因为为基本的View和ViewGroup控件不能决定具体的样子,这里说的样子更多偏重于控件的排列,大小宽高,之间的相对位置,这些属性都是由,Measure和Layout流程决定的。所以不管你怎么走Measure和Layout流程,其draw绘制都是一样的。draw绘制出来的样子是由具体的LinearLayout、FrameLayout、RelativeLayout、RecyclerView等等控件的Measure和Layout流程决定的。所以Measure和Layout流程需要在具体的控件中具体实现。
当然上面说的是系统的控件,LinearLayout、FrameLayout这些,自定义的View或者ViewGroup的流程那就完全由开发者自己说了。
不清楚绘制流程的请看:http://blog.csdn.net/yanbober/article/details/46128379
硬件绘制软件绘不足之处
目前硬件绘制软件绘制都存在不足,比如(来自:http://blog.csdn.net/jxt1234and2010/article/details/47326411):
脏区域识别之后并没有充分地优化 。
软件渲染时,尽管限制了渲染区域,但所有View的onDraw方法一个不丢的执行了一遍。 硬件渲染时,避免了没刷新的View调onDraw方法更新显示列表,但显示列表中的命令仍然一个不落的在全屏幕上执行了一遍。
一个比较容易想到的优化方案就是为主流程中的View建立一个R-Tree索引,invalidate这一接口修改为可以传入一个矩形范围R,更新时,利用R-Tree索引找出包含R的所有叶子View,令这些View在R范围重绘一次即可。
这个槽点其实影响倒不是很大,大部分情况下View不多,且如果出现性能问题,基本上都是一半以上的屏幕刷新。
对不住大家了,有一个硬件绘制很关键大方法dispatchGetDisplayList()没讲到,抱歉了。罪过罪过啊!